Python+OpenCV实现寻找到圆点标定板的角点
更新时间:2022年11月06日 10:27:06 作者:天人合一peng
这篇文章主要为大家详细介绍了Python+OpenCV实现找到圆点标定板所有点后通过距离找两个角点,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
图像大小按原图计算
dis_mm是标定板上的实际距离,要根据真实情况计算。
示例代码
# coding:utf-8 import math import cv2 import numpy as np import xml.etree.ElementTree as ET import matplotlib.pyplot as plt global DPI DPI = 0.00245 def mainFigure(img): w = 20 h = 5 params = cv2.SimpleBlobDetector_Params() # Setup SimpleBlobDetector parameters. # print('params') # print(params) # print(type(params)) # Filter by Area. params.filterByArea = True params.minArea = 10e1 params.maxArea = 10e4 # 图大要修改 100 params.minDistBetweenBlobs = 100 # params.filterByColor = True params.filterByConvexity = False # tweak these as you see fit # Filter by Circularity # params.filterByCircularity = False # params.minCircularity = 0.2 # params.blobColor = 0 # # # Filter by Convexity # params.filterByConvexity = True # params.minConvexity = 0.87 # Filter by Inertia # params.filterByInertia = True # params.filterByInertia = False # params.minInertiaRatio = 0.01 gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Detect blobs. # image = cv2.resize(gray_img, (int(img.shape[1]/4),int(img.shape[0]/4)), 1, 1, cv2.INTER_LINEAR) # image = cv2.resize(gray_img, dsize=None, fx=0.25, fy=0.25, interpolation=cv2.INTER_LINEAR) minThreshValue = 60 _, gray = cv2.threshold(gray, minThreshValue, 255, cv2.THRESH_BINARY) # gray = cv2.resize(gray, dsize=None, fx=1, fy=1, interpolation=cv2.INTER_LINEAR) # gray = cv2.resize(gray, dsize=None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) # plt.imshow(gray) # cv2.imshow("gray",gray) # 找到距离原点(0,0)最近和最远的点 h, w = img.shape[:2] detector = cv2.SimpleBlobDetector_create(params) keypoints = detector.detect(gray) print("检测点为", len(keypoints)) # opencv im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 255, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) # plt # fig = plt.figure() # im_with_keypoints = cv2.drawKeypoints(gray, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) color_img = cv2.cvtColor(im_with_keypoints, cv2.COLOR_BGR2RGB) DPIall = [] if keypoints is not None: # 找到距离(0,0)最近和最远的点 kpUpLeft = [] disUpLeft = [] for i in range(len(keypoints)): dis = math.sqrt(math.pow(keypoints[i].pt[0],2) + math.pow(keypoints[i].pt[1],2)) disUpLeft.append(dis) kpUpLeft.append(keypoints[i].pt) # cv2.circle(img, (int(keypoints[i].pt[0]), int(keypoints[i].pt[1])), 10, (0, 255, 0), 2) # 找到距离(640*2,0)最近和最远的点 kpUpRight = [] disUpRight=[] for i in range(len(keypoints)): # 最大距离坐标 dis2 = math.sqrt(math.pow(abs(keypoints[i].pt[0]-w),2) + math.pow(abs(keypoints[i].pt[1]),2)) disUpRight.append(dis2) kpUpRight.append(keypoints[i].pt) if disUpRight and disUpLeft: disDownLeftIndex = disUpRight.index(max(disUpRight)) pointDL = kpUpRight[disDownLeftIndex] disUpRightIndex = disUpRight.index(min(disUpRight)) pointUR = kpUpLeft[disUpRightIndex] disDownRightIndex = disUpLeft.index(max(disUpLeft)) pointDR = kpUpLeft[disDownRightIndex] disUpLeftIndex = disUpLeft.index(min(disUpLeft)) pointUL = kpUpLeft[disUpLeftIndex] if (pointDR is not None) and (pointUL is not None) and (pointDL is not None) and (pointUR is not None): # cv2.circle(color_img, (int(pointDR[0]),int(pointDR[1])), 30, (0, 255, 0),2) # cv2.circle(color_img, (int(pointUL[0]),int(pointUL[1])), 30, (0, 255, 0),2) # cv2.line(color_img,(int(pointDR[0]),int(pointDR[1])), (int(pointDL[0]),int(pointDL[1])),(0, 0, 255),2) # # cv2.circle(color_img, (int(pointDL[0]),int(pointDL[1])), 30, (0, 255, 0),2) # cv2.circle(color_img, (int(pointUR[0]),int(pointUR[1])), 30, (0, 255, 0),2) # cv2.line(color_img, (int(pointDL[0]),int(pointDL[1])), (int(pointUR[0]),int(pointUR[1])), (0, 0, 255), 2) # cv2.line(color_img, (int(pointUL[0]),int(pointUL[1])), (int(pointUR[0]),int(pointUR[1])), (0, 0, 255), 2) # 显示在原图上 原图减半因为之前放大了 # cv2.circle(img, (int(pointDR[0]/2), int(pointDR[1]/2)), 10, (0, 255, 0), 2) # cv2.circle(img, (int(pointUL[0]/2), int(pointUL[1]/2)), 10, (0, 255, 0), 2) # cv2.line(img,(int(pointDR[0]/2),int(pointDR[1]/2)), (int(pointUL[0]/2),int(pointUL[1]/2)),(0, 0, 255),2) # dis_UR_DL = math.sqrt(math.pow(pointUR[0]-pointDL[0], 2) + math.pow(pointUR[1]-pointDL[1], 2))/2 cv2.circle(img, (int(pointDR[0] ), int(pointDR[1] )), 10, (0, 255, 0), 2) cv2.circle(img, (int(pointUL[0] ), int(pointUL[1] )), 10, (0, 255, 0), 2) cv2.line(img, (int(pointDR[0] ), int(pointDR[1] )), (int(pointUL[0] ), int(pointUL[1] )), (0, 0, 255), 2) dis_UR_DL = math.sqrt(math.pow(pointUR[0] - pointDL[0], 2) + math.pow(pointUR[1] - pointDL[1], 2)) DPIall.append(dis_UR_DL) global DPI # 只计算斜对角线,约束条件简单一些,增加适用性 # 单边长a = 0.05*19 对角线 # DPI = (math.sqrt(1.3435)) / sum(DPIall) dis_mm = math.sqrt(math.pow(15, 2) + math.pow(15, 2)) print("两点的像素距离为", dis_UR_DL, "实际距离为", dis_mm) DPI = dis_mm / dis_UR_DL print("DPI", DPI) # configFile_xml = "wellConfig.xml" # tree = ET.parse(configFile_xml) # root = tree.getroot() # secondRoot = root.find("DPI") # print(secondRoot.text) # # secondRoot.text = str(DPI) # tree.write("wellConfig.xml") # print("DPI", DPI) else: pass print(DPI) # plt.imshow(color_img,interpolation='bicubic') # fname = "key points" # titlestr = '%s found %d keypoints' % (fname, len(keypoints)) # plt.title(titlestr) # # fig.canvas.set_window_title(titlestr) # plt.show() # cv2.imshow('findCorners', color_img) cv2.namedWindow('findCorners',2) cv2.imshow('findCorners', img) cv2.waitKey() if __name__ == "__main__": # # # 单张图片测试 # DPI hole # 0.01221465904139037 # # DPI needle # 0.012229753249515942 # img = cv2.imread("TwoBiaoDing/ROI_needle.jpg",1) img = cv2.imread("TwoBiaoDing/ROI_holes.jpg",1) img_roi = img.copy() # img_roi = img[640:2000, 1530:2800] # cv2.namedWindow("img_roi",2) # cv2.imshow("img_roi", img_roi) # cv2.waitKey() # img = cv2.imread("circles/Snap_0.jpg",1) mainFigure(img_roi) # # 所有图片测试 # for i in range(15): # fileName = "Snap_" + str(i) + ".jpg" # # img = cv2.imread("circles/Snap_007.jpg",1) # img = cv2.imread("circles/" + fileName,1) # print(fileName) # mainFigure(img)
到此这篇关于Python+OpenCV实现寻找到圆点标定板的角点的文章就介绍到这了,更多相关Python OpenCV寻找角点内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
女友半夜加班发自拍 python男友用30行代码发现惊天秘密
大家好,我是Lex 喜欢欺负超人那个Lex 女友说今晚加班,还给我发了一张照片? 我心生怀疑,就用python分析了一下照片,结果发现。。。 划重点:利用Python读取照片的GPS信息信息2021-08-08Python提取转移文件夹内所有.jpg文件并查看每一帧的方法
今天小编就为大家分享一篇Python提取转移文件夹内所有.jpg文件并查看每一帧的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2019-06-06
最新评论