PyTorch中关于tensor.repeat()的使用

 更新时间:2022年11月09日 10:58:51   作者:tomeasure  
这篇文章主要介绍了PyTorch中关于tensor.repeat()的使用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

关于tensor.repeat()的使用

考虑到很多人在学习这个函数,我想在这里提 一个建议:

强烈推荐 使用 einops 模块中的 repeat() 函数 替代 tensor.repeat()!

它可以摆脱 tensor.repeat() 参数的神秘主义。

einops 模块文档地址:https://nbviewer.jupyter.org/github/arogozhnikov/einops/blob/master/docs/1-einops-basics.ipynb

学习 tensor.repeat() 这个函数的功能的时候,最好还是要观察所得到的 结果的维度。

不多说,看代码:

>>> import torch
>>> 
>>> # 定义一个 33x55 张量
>>> a = torch.randn(33, 55)
>>> a.size()
torch.Size([33, 55])
>>> 
>>> # 下面开始尝试 repeat 函数在不同参数情况下的效果
>>> a.repeat(1,1).size()     # 原始值:torch.Size([33, 55])
torch.Size([33, 55])
>>> 
>>> a.repeat(2,1).size()     # 原始值:torch.Size([33, 55])
torch.Size([66, 55])
>>> 
>>> a.repeat(1,2).size()     # 原始值:torch.Size([33, 55])
torch.Size([33, 110])
>>>
>>> a.repeat(1,1,1).size()   # 原始值:torch.Size([33, 55])
torch.Size([1, 33, 55])
>>>
>>> a.repeat(2,1,1).size()   # 原始值:torch.Size([33, 55])
torch.Size([2, 33, 55])
>>>
>>> a.repeat(1,2,1).size()   # 原始值:torch.Size([33, 55])
torch.Size([1, 66, 55])
>>>
>>> a.repeat(1,1,2).size()   # 原始值:torch.Size([33, 55])
torch.Size([1, 33, 110])
>>>
>>> a.repeat(1,1,1,1).size() # 原始值:torch.Size([33, 55])
torch.Size([1, 1, 33, 55])
>>> 
>>> # ------------------ 割割 ------------------
>>> # repeat()的参数的个数,不能少于被操作的张量的维度的个数,
>>> # 下面是一些错误示例
>>> a.repeat(2).size()  # 1D < 2D, error
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor
>>>
>>> # 定义一个3维的张量,然后展示前面提到的那个错误
>>> b = torch.randn(5,6,7)
>>> b.size() # 3D
torch.Size([5, 6, 7])
>>> 
>>> b.repeat(2).size() # 1D < 3D, error
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor
>>>
>>> b.repeat(2,1).size() # 2D < 3D, error
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor
>>>
>>> b.repeat(2,1,1).size() # 3D = 3D, okay
torch.Size([10, 6, 7])
>>>

Tensor.repeat()的简单用法

相当于手动实现广播机制,即沿着给定的维度对tensor进行重复:

比如说对下面x的第1个通道复制三次,其余通道保持不变:

import torch

x = torch.randn(1, 3, 224, 224)
y = x.repeat(3, 1, 1, 1)
print(x.shape)
print(y.shape)

结果为:

torch.Size([1, 3, 224, 224])
torch.Size([3, 3, 224, 224])

这个在复制batch的时候用的比较多,上面的情况就相当于batch为1的3×224×224特征图复制成了batch为3

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python3.x+pycharm+Anaconda中缩小打包的.exe体积的问题

    Python3.x+pycharm+Anaconda中缩小打包的.exe体积的问题

    这篇文章主要介绍了Python3.x+pycharm+Anaconda中缩小打包的.exe体积的问题,本文通过图文实例相结合给大家分享解决方案,需要的朋友可以参考下
    2021-08-08
  • Django更新models数据库结构步骤

    Django更新models数据库结构步骤

    这篇文章主要介绍了Django更新models数据库结构的操作步骤,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • python 中赋值,深拷贝,浅拷贝的区别

    python 中赋值,深拷贝,浅拷贝的区别

    这篇文章主要介绍了python 中赋值,深拷贝,浅拷贝的区别,下文利用实例对三者进行详细的解析,具有一的的参考价值,需要的小伙伴可以参考一下,希望对你的学习有所帮助
    2022-03-03
  • requests库发送http请求的示例代码

    requests库发送http请求的示例代码

    这篇文章主要介绍了Python requests发送http请求的相关知识,requests是一个Python的第三方库,用于发送HTTP请求,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2023-12-12
  • Python中执行分位数回归的示例详解

    Python中执行分位数回归的示例详解

    分位数回归是线性回归的扩展版本,分位数回归构建一组变量(也称为自变量)和分位数(也称为因变量)之间的关系,下面我们就来看看Python如何执行分位数回归吧
    2024-03-03
  • Python安装第三方库及常见问题处理方法汇总

    Python安装第三方库及常见问题处理方法汇总

    本文给大家汇总介绍了Python安装第三方库及常见问题处理方法,非常的简单使用,有需要的小伙伴可以参考下
    2016-09-09
  • python一行输入多值的实现详解

    python一行输入多值的实现详解

    开发人员通常想要用户在一行中输入多个值或者输入。在python中有两种方式让用户在一行中输入多个值或者输入,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-09-09
  • python3.0 字典key排序

    python3.0 字典key排序

    字典对象其实就是键-值对 下面是字典对象的添加,修改,删除 (修改与添加方法相同,当key值不存在的时候添加)
    2008-12-12
  • Python+OpenCV实现边缘检测与角点检测详解

    Python+OpenCV实现边缘检测与角点检测详解

    这篇文章主要为大家详细介绍了如何通过Python+OpenCV实现边缘检测与角点检测,文中的示例代码讲解详细,对我们学习Python与OpenCV有一定的帮助,需要的可以参考一下
    2023-02-02
  • pytorch常用函数之torch.randn()解读

    pytorch常用函数之torch.randn()解读

    这篇文章主要介绍了pytorch常用函数之torch.randn()解读,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02

最新评论