Java Metrics系统性能监控工具的使用详解
前言
Metrics是一个Java库,可以对系统进行监控,统计一些系统的性能指标。
比如一个系统后台服务,我们可能需要了解一下下面的一些情况:
1、每秒钟的请求数是多少(TPS)?
2、平均每个请求处理的时间?
3、请求处理的最长耗时?
4、等待处理的请求队列长度?
5、又或者一个缓存服务:缓存的命中率?平均查询缓存的时间?
基本上每一个服务、应用都需要做一个监控系统,这需要尽量以少量的代码,实现统计某类数据的功能。
Metric Registries
MetricRegistry类是Metrics的核心,它是存放应用中所有metrics的容器,也是我们使用 Metrics 库的起点。
MetricRegistry registry = new MetricRegistry();
Metrics 数据展示
Metrics 提供了 Report 接口,用于展示 metrics 获取到的统计数据。metrics-core
中主要实现了四种 reporter: JMX ,console, SLF4J, 和 CSV。 在的例子中,我们使用 ConsoleReporter 。
Metrics的五种类型
Gauges
比较简单的度量指标,只有一个简单的返回值,例如,我们想衡量一个待处理队列中任务的个数,代码如下:
package com.zyh.maven.metricsdemo; import com.codahale.metrics.ConsoleReporter; import com.codahale.metrics.Gauge; import com.codahale.metrics.MetricRegistry; import java.util.LinkedList; import java.util.Queue; import java.util.concurrent.TimeUnit; public class GaugeTest { public static Queue<String> q = new LinkedList<String>(); public static void main(String[] args) throws InterruptedException { MetricRegistry metricRegistry = new MetricRegistry(); ConsoleReporter reporter = ConsoleReporter.forRegistry(metricRegistry).build(); reporter.start(1, TimeUnit.SECONDS); metricRegistry.register(MetricRegistry.name(GaugeTest.class, "queue", "size"), new Gauge<Integer>(){ @Override public Integer getValue() { return q.size(); } }); while (true) { Thread.sleep(1000); q.add("lfwhvip"); } } }
运行结果 :
22-11-3 14:36:28 ================================================================
-- Gauges ----------------------------------------------------------------------
com.zyh.maven.metricsdemo.GaugeTest.queue.size
value = 1
22-11-3 14:36:29 ================================================================
-- Gauges ----------------------------------------------------------------------
com.zyh.maven.metricsdemo.GaugeTest.queue.size
value = 1
Counters
Counter 就是计数器,Counter 只是用 Gauge 封装了 AtomicLong ,我们可以使用如下的方法获得队列大小,代码如下:
package com.zyh.maven.metricsdemo; import com.codahale.metrics.ConsoleReporter; import com.codahale.metrics.Counter; import com.codahale.metrics.MetricRegistry; import java.util.Queue; import java.util.Random; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.TimeUnit; public class CounterTest { public static Queue<String> q = new LinkedBlockingDeque<String>(); public static Counter pendingJobs; public static Random random = new Random(); public static void addJob(String job) { pendingJobs.inc(); q.offer(job); } public static String takeJob() { pendingJobs.dec(); return q.poll(); } public static void main(String[] args) throws InterruptedException { MetricRegistry registry = new MetricRegistry(); ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build(); reporter.start(1, TimeUnit.SECONDS); pendingJobs = registry.counter(MetricRegistry.name(Queue.class, "pending-jobs", "size")); int num = 1; while(true) { Thread.sleep(200); if(random.nextDouble() > 0.7) { String job = takeJob(); System.out.println("take job :" + job); }else{ String job = "Job-" + num; addJob(job); System.out.println("add Job :" + job); } num++; } } }
运行结果
take job :Job-14
add Job :Job-26
add Job :Job-27
add Job :Job-28
add Job :Job-29
22-11-3 14:39:58 ================================================================
-- Counters --------------------------------------------------------------------
java.util.Queue.pending-jobs.size
count = 11
take job :Job-16
add Job :Job-31
add Job :Job-32
take job :Job-17
take job :Job-18
22-11-3 14:39:59 ================================================================
-- Counters --------------------------------------------------------------------
java.util.Queue.pending-jobs.size
count = 10
Meters
Meter度量一系列事件发生的速率(rate),例如TPS。Meters会统计最近1分钟,5分钟,15分钟,还有全部时间的速率。
package com.zyh.maven.metricsdemo; import com.codahale.metrics.ConsoleReporter; import com.codahale.metrics.Meter; import com.codahale.metrics.MetricRegistry; import java.util.Random; import java.util.concurrent.TimeUnit; public class MeterTest { public static Random random = new Random(); public static void request(Meter meter) { System.out.println("request"); meter.mark(); } public static void request(Meter meter, int n) { while(n > 0) { request(meter); n--; } } public static void main(String[] args) throws InterruptedException { MetricRegistry registry = new MetricRegistry(); ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build(); reporter.start(1, TimeUnit.SECONDS); Meter meterTps = registry.meter(MetricRegistry.name(MeterTest.class, "request", "tps")); while(true) { request(meterTps, random.nextInt(5)); Thread.sleep(1000); } } }
运行结果
22-11-7 16:18:38 ===============================================================
-- Meters ----------------------------------------------------------------------
com.example.jkytest.modules.MeterTest.request.tps
count = 8
mean rate = 1.60 events/second
1-minute rate = 1.60 events/second
5-minute rate = 1.60 events/second
15-minute rate = 1.60 events/second
request
request
request
request
22-11-7 16:18:39 ===============================================================
-- Meters ----------------------------------------------------------------------
com.example.jkytest.modules.MeterTest.request.tps
count = 12
mean rate = 2.00 events/second
1-minute rate = 1.60 events/second
5-minute rate = 1.60 events/second
15-minute rate = 1.60 events/second
Histograms
Histogram统计数据的分布情况。比如最小值,最大值,中间值,还有中位数,75百分位,90百分位,95百分位,98百分位,99百分位,和 99.9百分位的值(percentiles)。
package com.example.jkytest.modules; import com.codahale.metrics.ConsoleReporter; import com.codahale.metrics.ExponentiallyDecayingReservoir; import com.codahale.metrics.Histogram; import com.codahale.metrics.MetricRegistry; import java.util.Random; import java.util.concurrent.TimeUnit; public class HistogramsTest { public static Random random = new Random(); public static void main(String[] args) throws InterruptedException { MetricRegistry registry = new MetricRegistry(); ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build(); reporter.start(1, TimeUnit.SECONDS); Histogram histogram = new Histogram(new ExponentiallyDecayingReservoir()); registry.register(MetricRegistry.name(HistogramsTest.class, "request", "histogram"), histogram); while (true) { Thread.sleep(1000); histogram.update(random.nextInt(100000)); } } }
运行结果
-- Histograms ------------------------------------------------------------------
com.example.jkytest.modules.HistogramsTest.request.histogram
count = 1
min = 33246
max = 33246
mean = 33246.00
stddev = 0.00
median = 33246.00
75% <= 33246.00
95% <= 33246.00
98% <= 33246.00
99% <= 33246.00
99.9% <= 33246.00
22-11-7 16:26:34 ===============================================================
-- Histograms ------------------------------------------------------------------
com.example.jkytest.modules.HistogramsTest.request.histogram
count = 2
min = 33246
max = 68864
mean = 51188.56
stddev = 17808.50
median = 68864.00
75% <= 68864.00
95% <= 68864.00
98% <= 68864.00
99% <= 68864.00
99.9% <= 68864.00
Timers
Timer其实是 Histogram 和 Meter 的结合, histogram 某部分代码/调用的耗时, meter统计TPS。
package com.example.jkytest.modules; import com.codahale.metrics.ConsoleReporter; import com.codahale.metrics.MetricRegistry; import com.codahale.metrics.Timer; import java.util.Random; import java.util.concurrent.TimeUnit; public class TimerTest { public static Random random = new Random(); public static void main(String[] args) throws InterruptedException { MetricRegistry registry = new MetricRegistry(); ConsoleReporter reporter = ConsoleReporter.forRegistry(registry).build(); reporter.start(1, TimeUnit.SECONDS); Timer timer = registry.timer(MetricRegistry.name(TimerTest.class, "get-latency")); Timer.Context ctx; while (true) { ctx = timer.time(); Thread.sleep(random.nextInt(1000)); ctx.stop(); } } }
运行结果
-- Timers ----------------------------------------------------------------------
com.example.jkytest.modules.TimerTest.get-latency
count = 1
mean rate = 1.00 calls/second
1-minute rate = 0.00 calls/second
5-minute rate = 0.00 calls/second
15-minute rate = 0.00 calls/second
min = 560.21 milliseconds
max = 560.21 milliseconds
mean = 560.21 milliseconds
stddev = 0.00 milliseconds
median = 560.21 milliseconds
75% <= 560.21 milliseconds
95% <= 560.21 milliseconds
98% <= 560.21 milliseconds
99% <= 560.21 milliseconds
99.9% <= 560.21 milliseconds
到此这篇关于Java Metrics系统性能监控工具的使用详解的文章就介绍到这了,更多相关Java Metrics系统性能监控内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
MyBatis中模糊查询使用CONCAT('%',#{str},'%')出错的解
这篇文章主要介绍了MyBatis中模糊查询使用CONCAT('%',#{str},'%')出错的解决,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2022-01-01SpringBoot+LayIM+t-io 实现好友申请通知流程
这篇文章主要介绍了 SpringBoot+LayIM+t-io 实现好友申请通知流程,本文图文并茂给大家介绍的非常详细,需要的朋友可以参考下2017-12-12
最新评论