Python基于随机采样一至性实现拟合椭圆

 更新时间:2022年11月14日 10:05:54   作者:天人合一peng  
这篇文章主要为大家详细介绍了Python如何基于随机采样一至性实现拟合椭圆,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的可以了解一下

检测这些圆,先找轮廓后通过轮廓点拟合椭圆

import cv2
import numpy as np
import matplotlib.pyplot as plt
import math
from Ransac_Process import RANSAC
 
 
 
def lj_img(img):
    wlj, hlj = img.shape[1], img.shape[0]
    lj_dis = 7      # 连接白色区域的判定距离
    for ilj in range(wlj):
        for jlj in range(hlj):
            if img[jlj, ilj] == 255:    # 判断上下左右是否存在白色区域并连通
                for im in range(1, lj_dis):
                    for jm in range(1, lj_dis):
                        if ilj - im >= 0 and jlj - jm >= 0  and img[jlj - jm, ilj - im] == 255:
                            cv2.line(img, (jlj, ilj), (jlj - jm, ilj - im), (255, 255, 255), thickness=1)
                        if ilj + im < wlj and jlj + jm < hlj and img[jlj + jm, ilj + im] == 255:
                            cv2.line(img, (jlj, ilj), (jlj + jm, ilj + im), (255, 255, 255), thickness=1)
    return img
 
def cul_area(x_mask, y_mask, r_circle, mask):
    mask_label = mask.copy()
    num_area = 0
    for xm in range(x_mask+r_circle-10, x_mask+r_circle+10):
        for ym in range(y_mask+r_circle-10, y_mask+r_circle+10):
            # print(mask[ym, xm])
            if (pow((xm-x_mask), 2) + pow((ym-y_mask), 2) - pow(r_circle,  2)) == 0 and mask[ym, xm][0] == 255:
                num_area += 1
                mask_label[ym, xm] = (0, 0, 255)
    cv2.imwrite('./test2/mask_label.png', mask_label)
    print(num_area)
    return num_area
 
def mainFigure(img, point0):
    # params = cv2.SimpleBlobDetector_Params()  # 黑色斑点面积大小:1524--1581--1400--周围干扰面积: 1325--1695--1688--
    # # Filter by Area.   设置斑点检测的参数
    # params.filterByArea = True  # 根据大小进行筛选
    # params.minArea = 10e2
    # params.maxArea = 10e4
    # params.minDistBetweenBlobs = 40  # 设置两个斑点间的最小距离 10*7.5
    # # params.filterByColor = True             # 跟据颜色进行检测
    # params.filterByConvexity = False  # 根据凸性进行检测
    # params.minThreshold = 30  # 二值化的起末阈值,只有灰度值大于当前阈值的值才会被当成特征值
    # params.maxThreshold = 30 * 2.5  # 75
    # params.filterByColor = True  # 检测颜色限制,0黑色,255白色
    # params.blobColor = 255
    # params.filterByCircularity = True
    # params.minCircularity = 0.3
 
    point_center = []
    # cv2.imwrite('./test2/img_source.png', img)
    img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    # cv2.imwrite('./test2/img_hsv.png', img_hsv)
    w, h = img.shape[1], img.shape[0]
    w_hsv, h_hsv = img_hsv.shape[1], img_hsv.shape[0]
    for i_hsv in range(w_hsv):
        for j_hsv in range(h_hsv):
            if img_hsv[j_hsv, i_hsv][0] < 200 and img_hsv[j_hsv, i_hsv][1] < 130 and img_hsv[j_hsv, i_hsv][2] > 120:
                # if hsv[j_hsv, i_hsv][0] < 100 and hsv[j_hsv, i_hsv][1] < 200 and hsv[j_hsv, i_hsv][2] > 80:
                img_hsv[j_hsv, i_hsv] = 255, 255, 255
            else:
                img_hsv[j_hsv, i_hsv] = 0, 0, 0
    # cv2.imwrite('./test2/img_hsvhb.png', img_hsv)
    # cv2.imshow("hsv", img_hsv)
    # cv2.waitKey()
 
    # 灰度化处理图像
    grayImage = cv2.cvtColor(img_hsv, cv2.COLOR_BGR2GRAY)
    # mask = np.zeros((grayImage.shape[0], grayImage.shape[1]), np.uint8)
    # mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
    # cv2.imwrite('./mask.png', mask)
 
    # 尝试寻找轮廓
    contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 
    # 合并轮廓
    if len(contours) > 1:
        # print(contours)
        # 去掉离图中心最远的圆
        max_idex, dis_max = 0, 0
        for c_i in range(len(contours)):
            c = contours[c_i]
            cx, cy, cw, ch = cv2.boundingRect(c)
            dis = math.sqrt(pow((cx + cw / 2 - w / 2), 2) + pow((cy + ch / 2 - h / 2), 2))
            if dis > dis_max:
                dis_max = dis
                max_idex = c_i
        contours.pop(max_idex)
        # print(contours)
 
        if len(contours) > 1:
            contours_merge = np.vstack([contours[0], contours[1]])
            for i in range(2, len(contours)):
                contours_merge = np.vstack([contours_merge, contours[i]])
            cv2.drawContours(img, contours_merge, -1, (0, 255, 255), 1)
            cv2.imwrite('./test2/img_res.png', img)
            # cv2.imshow("contours_merge", img)
            # cv2.waitKey()
        else:
            contours_merge = contours[0]
    else:
        contours_merge = contours[0]
 
 
 
    # RANSAC拟合
    points_data = np.reshape(contours_merge, (-1, 2))  # ellipse edge points set
 
    print("points_data", len(points_data))
    # 2.Ransac fit ellipse param
    Ransac = RANSAC(data=points_data, threshold=0.5, P=.99, S=.5, N=20)
    # Ransac = RANSAC(data=points_data, threshold=0.05, P=.99, S=.618, N=25)
 
    (X, Y), (LAxis, SAxis), Angle = Ransac.execute_ransac()
    # print( (X, Y), (LAxis, SAxis))
    # 拟合圆
    cv2.ellipse(img, ((X, Y), (LAxis, SAxis), Angle), (0, 0, 255), 1, cv2.LINE_AA)  # 画圆
    cv2.circle(img, (int(X), int(Y)), 3, (0, 0, 255), -1)  # 画圆心
    point_center.append(int(X))
    point_center.append(int(Y))
 
 
 
    rrt = cv2.fitEllipse(contours_merge)  # x, y)代表椭圆中心点的位置(a, b)代表长短轴长度,应注意a、b为长短轴的直径,而非半径,angle 代表了中心旋转的角度
    # print("rrt", rrt)
    cv2.ellipse(img, rrt, (255, 0, 0), 1, cv2.LINE_AA)  # 画圆
    x, y = rrt[0]
    cv2.circle(img, (int(x), int(y)), 3, (255, 0, 0), -1)  # 画圆心
    point_center.append(int(x))
    point_center.append(int(y))
    # print("no",(x,y))
 
    cv2.imshow("fit circle", img)
    cv2.waitKey()
    # cv2.imwrite("./test2/fitcircle.png", img)
 
    # # 尝试寻找轮廓
    # contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    # # print('初次检测数量: ', len(contours))
    # if len(contours) == 1:
    #     cv2.drawContours(mask, contours[0], -1, (255, 255, 255), 1)
    #     cv2.imwrite('./mask.png', mask)
    #     x, y, w, h = cv2.boundingRect(contours[0])
    #     cv2.circle(img, (int(x+w/2), int(y+h/2)), 1, (0, 0, 255), -1)
    #     cv2.rectangle(img, (x, y), (x + w + 1, y + h + 1), (0, 255, 255), 1)
    #     point_center.append(x + w / 2 + point0[0])
    #     point_center.append(y + h / 2 + point0[1])
    #     cv2.imwrite('./center1.png', img)
    # else:
    #     # 去除小面积杂点, 连接轮廓,求最小包围框
    #     kernel1 = np.ones((3, 3), dtype=np.uint8)
    #     kernel2 = np.ones((2, 2), dtype=np.uint8)
    #     grayImage = cv2.dilate(grayImage, kernel1, 1)  # 1:迭代次数,也就是执行几次膨胀操作
    #     grayImage = cv2.erode(grayImage, kernel2, 1)
    #     cv2.imwrite('./img_dilate_erode.png', grayImage)
    #     contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    #     if len(contours) == 1:
    #         cv2.drawContours(mask, contours[0], -1, (255, 255, 255), 1)
    #         cv2.imwrite('./mask.png', mask)
    #         x, y, w, h = cv2.boundingRect(contours[0])
    #         cv2.circle(img, (int(x + w / 2), int(y + h / 2)), 1, (0, 0, 255), -1)
    #         cv2.rectangle(img, (x, y), (x + w + 1, y + h + 1), (0, 255, 255), 1)
    #         point_center.append(x + w / 2 + point0[0])
    #         point_center.append(y + h / 2 + point0[1])
    #         cv2.imwrite('./center1.png', img)
    #     else:
    #         gray_circles = cv2.HoughCircles(grayImage, cv2.HOUGH_GRADIENT, 4, 10000, param1=100, param2=81, minRadius=10, maxRadius=19)
    #         # cv2.imwrite('./img_gray_circles.jpg', gray_circles)
    #         if len(gray_circles[0]) > 0:
    #             print('霍夫圆个数:', len(gray_circles[0]))
    #             for (x, y, r) in gray_circles[0]:
    #                 x = int(x)
    #                 y = int(y)
    #                 cv2.circle(grayImage, (x, y), int(r), (255, 255, 255), -1)
    #             cv2.imwrite('./img_hf.jpg', grayImage)
    #
    #             detector = cv2.SimpleBlobDetector_create(params)
    #             keypoints = list(detector.detect(grayImage))
    #             for poi in keypoints:  # 回归到原大图坐标系
    #                 x_poi, y_poi = poi.pt[0], poi.pt[1]
    #                 cv2.circle(img, (int(x_poi), int(y_poi)), 20, (255, 255, 255), -1)
    #                 point_center.append(poi.pt[0] + point0[0])
    #                 point_center.append(poi.pt[1] + point0[1])
    #                 cv2.imwrite('./img_blob.png', img)
    #         else:
    #             for num_cont in range(len(contours)):
    #                 cont = cv2.contourArea(contours[num_cont])
    #                 # if cont > 6:
    #                 #     contours2.append(contours[num_cont])
    #                 if cont <= 6:
    #                     x, y, w, h = cv2.boundingRect(contours[num_cont])
    #                     cv2.rectangle(grayImage, (x, y), (x + w, y + h), (0, 0, 0), -1)
    #             cv2.imwrite('./img_weilj.png', grayImage)
    #             grayImage = lj_img(grayImage)
    #             cv2.imwrite('./img_lj.png', grayImage)
    #             contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    #             # print('再次检测数量: ', len(contours))
    #
    #             cv2.drawContours(mask, contours[0], -1, (255, 255, 255), 1)
    #             cv2.imwrite('./mask.png', mask)
    #             x, y, w, h = cv2.boundingRect(contours[0])
    #             cv2.circle(img, (int(x + w / 2), int(y + h / 2)), 1, (0, 0, 255), -1)
    #             cv2.rectangle(img, (x, y), (x + w + 1, y + h + 1), (0, 255, 255), 1)
    #             point_center.append(x + w / 2 + point0[0])
    #             point_center.append(y + h / 2 + point0[1])
    #             cv2.imwrite('./center1.png', img)
 
    return point_center[0], point_center[1]
 
if __name__ == "__main__":
 
    for i in range(1,6):
        imageName = "s"
        imageName += str(i)
        path = './Images/danHoles/' + imageName + '.png'
        print(path)
        img = cv2.imread(path)
        point0 = [0, 0]
        cir_x, cir_y = mainFigure(img, point0)
 
    # img = cv2.imread('./Images/danHoles/s2.png')
    # point0 = [0, 0]
    # cir_x, cir_y = mainFigure(img, point0)

Ransac_Process.py

import cv2
import math
import random
import numpy as np
from numpy.linalg import inv, svd, det
import time
 
class RANSAC:
    def __init__(self, data, threshold, P, S, N):
        self.point_data = data  # 椭圆轮廓点集
        self.length = len(self.point_data)  # 椭圆轮廓点集长度
        self.error_threshold = threshold  # 模型评估误差容忍阀值
 
        self.N = N  # 随机采样数
        self.S = S  # 设定的内点比例
        self.P = P  # 采得N点去计算的正确模型概率
        self.max_inliers = self.length * self.S  # 设定最大内点阀值
        self.items = 10
 
        self.count = 0  # 内点计数器
        self.best_model = ((0, 0), (1e-6, 1e-6), 0)  # 椭圆模型存储器
 
    def random_sampling(self, n):
        # 这个部分有修改的空间,这样循环次数太多了,可以看看别人改进的ransac拟合椭圆的论文
        """随机取n个数据点"""
        all_point = self.point_data
        select_point = np.asarray(random.sample(list(all_point), n))
        return select_point
 
    def Geometric2Conic(self, ellipse):
        # 这个部分参考了GitHub中的一位大佬的,但是时间太久,忘记哪个人的了
        """计算椭圆方程系数"""
        # Ax ^ 2 + Bxy + Cy ^ 2 + Dx + Ey + F
        (x0, y0), (bb, aa), phi_b_deg = ellipse
 
        a, b = aa / 2, bb / 2  # Semimajor and semiminor axes
        phi_b_rad = phi_b_deg * np.pi / 180.0  # Convert phi_b from deg to rad
        ax, ay = -np.sin(phi_b_rad), np.cos(phi_b_rad)  # Major axis unit vector
 
        # Useful intermediates
        a2 = a * a
        b2 = b * b
 
        # Conic parameters
        if a2 > 0 and b2 > 0:
            A = ax * ax / a2 + ay * ay / b2
            B = 2 * ax * ay / a2 - 2 * ax * ay / b2
            C = ay * ay / a2 + ax * ax / b2
            D = (-2 * ax * ay * y0 - 2 * ax * ax * x0) / a2 + (2 * ax * ay * y0 - 2 * ay * ay * x0) / b2
            E = (-2 * ax * ay * x0 - 2 * ay * ay * y0) / a2 + (2 * ax * ay * x0 - 2 * ax * ax * y0) / b2
            F = (2 * ax * ay * x0 * y0 + ax * ax * x0 * x0 + ay * ay * y0 * y0) / a2 + \
                (-2 * ax * ay * x0 * y0 + ay * ay * x0 * x0 + ax * ax * y0 * y0) / b2 - 1
        else:
            # Tiny dummy circle - response to a2 or b2 == 0 overflow warnings
            A, B, C, D, E, F = (1, 0, 1, 0, 0, -1e-6)
 
        # Compose conic parameter array
        conic = np.array((A, B, C, D, E, F))
        return conic
 
    def eval_model(self, ellipse):
        # 这个地方也有很大修改空间,判断是否内点的条件在很多改进的ransac论文中有说明,可以多看点论文
        """评估椭圆模型,统计内点个数"""
        # this an ellipse ?
        a, b, c, d, e, f = self.Geometric2Conic(ellipse)
        E = 4 * a * c - b * b
        if E <= 0:
            # print('this is not an ellipse')
            return 0, 0
 
        #  which long axis ?
        (x, y), (LAxis, SAxis), Angle = ellipse
        LAxis, SAxis = LAxis / 2, SAxis / 2
        if SAxis > LAxis:
            temp = SAxis
            SAxis = LAxis
            LAxis = temp
 
        # calculate focus
        Axis = math.sqrt(LAxis * LAxis - SAxis * SAxis)
        f1_x = x - Axis * math.cos(Angle * math.pi / 180)
        f1_y = y - Axis * math.sin(Angle * math.pi / 180)
        f2_x = x + Axis * math.cos(Angle * math.pi / 180)
        f2_y = y + Axis * math.sin(Angle * math.pi / 180)
 
        # identify inliers points
        f1, f2 = np.array([f1_x, f1_y]), np.array([f2_x, f2_y])
        f1_distance = np.square(self.point_data - f1)
        f2_distance = np.square(self.point_data - f2)
        all_distance = np.sqrt(f1_distance[:, 0] + f1_distance[:, 1]) + np.sqrt(f2_distance[:, 0] + f2_distance[:, 1])
 
        Z = np.abs(2 * LAxis - all_distance)
        delta = math.sqrt(np.sum((Z - np.mean(Z)) ** 2) / len(Z))
 
        # Update inliers set
        inliers = np.nonzero(Z < 0.8 * delta)[0]
        inlier_pnts = self.point_data[inliers]
 
        return len(inlier_pnts), inlier_pnts
 
    def execute_ransac(self):
        Time_start = time.time()
        while math.ceil(self.items):
            # print(self.max_inliers)
 
            # 1.select N points at random
            select_points = self.random_sampling(self.N)
 
            # 2.fitting N ellipse points
            ellipse = cv2.fitEllipse(select_points)
 
            # 3.assess model and calculate inliers points
            inliers_count, inliers_set = self.eval_model(ellipse)
 
            # 4.number of new inliers points more than number of old inliers points ?
            if inliers_count > self.count:
                ellipse_ = cv2.fitEllipse(inliers_set)  # fitting ellipse for inliers points
                self.count = inliers_count  # Update inliers set
                self.best_model = ellipse_  # Update best ellipse
                # print("self.count", self.count)
 
                # 5.number of inliers points reach the expected value
                if self.count > self.max_inliers:
                    print('the number of inliers: ', self.count)
                    break
 
                # Update items
                # print(math.log(1 - pow(inliers_count / self.length, self.N)))
                self.items = math.log(1 - self.P) / math.log(1 - pow(inliers_count / self.length, self.N))
 
        return self.best_model
 
 
if __name__ == '__main__':
 
 
    # 1.find ellipse edge line
    contours, hierarchy = cv2.findContours(grayImage, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
 
    # 2.Ransac fit ellipse param
    points_data = np.reshape(contours, (-1, 2))  # ellipse edge points set
    Ransac = RANSAC(data=points_data, threshold=0.5, P=.99, S=.618, N=10)
    (X, Y), (LAxis, SAxis), Angle = Ransac.execute_ransac()

检测对象

检测结果

蓝色是直接椭圆拟合的结果

红色是Ransc之后的结果

到此这篇关于Python基于随机采样一至性实现拟合椭圆的文章就介绍到这了,更多相关Python拟合椭圆内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pycharm开发一个简单界面和通用mvc模板(操作方法图解)

    pycharm开发一个简单界面和通用mvc模板(操作方法图解)

    这篇文章主要介绍了pycharm开发最简单的界面和通用mvc模板的方法,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • Python通过m3u8文件下载合并ts视频的操作

    Python通过m3u8文件下载合并ts视频的操作

    这篇文章主要介绍了Python通过m3u8文件下载合并ts视频的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • Django多个app urls配置代码实例

    Django多个app urls配置代码实例

    这篇文章主要介绍了Django多个app urls配置代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11
  • Python网络爬虫之HTTP原理

    Python网络爬虫之HTTP原理

    在写爬虫之前,我们还需要了解一些基础知识,如HTTP原理、网页的基础知识、爬虫的基本原理、Cookies的基本原理等。本文中,我们就对这些基础知识做一个简单的总结,需要的朋友参考一下
    2023-04-04
  • pip install命令安装扩展库整理

    pip install命令安装扩展库整理

    这篇文章主要介绍了pip install命令安装扩展库整理,文中代码和图文讲解的很详细,有需要的同学可以参考下
    2021-03-03
  • 如何实现删除numpy.array中的行或列

    如何实现删除numpy.array中的行或列

    如何实现删除numpy.array中的行或列?今天小编就为大家分享一篇对删除numpy.array中行或列的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • python元组简单介绍

    python元组简单介绍

    这篇文章主要给大家分享中得python基础 元组,元组的特点是一种不可变序列,一旦创建就不能修改,带着些许了解和小编一起进入文章得具体内容吧
    2021-10-10
  • Python理解递归的方法总结

    Python理解递归的方法总结

    在本篇文章里小编给大家分享了关于如何使用Python来理解递归的知识点内容,有兴趣的朋友们学习下。
    2019-01-01
  • Python实现求笛卡尔乘积的方法

    Python实现求笛卡尔乘积的方法

    这篇文章主要介绍了Python实现求笛卡尔乘积的方法,结合实例形式分析了Python计算笛卡尔乘积的原理与实现技巧,需要的朋友可以参考下
    2017-09-09
  • Django与AJAX实现网页动态数据显示的示例代码

    Django与AJAX实现网页动态数据显示的示例代码

    这篇文章主要介绍了Django与AJAX实现网页动态数据显示的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02

最新评论