Python按天实现生成时间范围序列的方法详解
有的时候我们希望生成一段时间返回,比如从 2022-01-01 00:00:00 后面的 10 天,这么 10 个 datetime 对象,但是我们又不想自己去计算哪些月有30天哪些月有31天。
使用 timedelta
datetime 中包含了 timedelta ,可以用来实现这个功能
from datetime import datetime, timedelta, timezone from pydantic.datetime_parse import parse_datetime from loguru import logger SECOND: int = 1 MINUTE: int = SECOND*60 HOUR: int = MINUTE*60 DAY: int = HOUR*24 WEEK: int = DAY*7 MONTH: int = DAY*30 def get_utc_now_timestamp(with_tzinfo: bool = True) -> datetime: """ https://blog.csdn.net/ball4022/article/details/101670024 """ if not with_tzinfo: return datetime.utcnow() return datetime.utcnow().replace(tzinfo=timezone.utc) def timedelta_seconds(start_time: datetime, end_time: datetime = None) -> int: """ 返回两个时间相差的秒数 """ if not end_time: end_time = get_utc_now_timestamp() return int((end_time - start_time).total_seconds()) def custom_timestamp(base_timestamp: datetime, seconds: int, reduce=False): return base_timestamp + timedelta(seconds=seconds) \ if not reduce \ else base_timestamp - timedelta(seconds=seconds) start_datetime = parse_datetime('2022-02-27 00:00:00') data = [ dt for dt in [ custom_timestamp(start_datetime, DAY*i) for i in range(10) ] ] logger.debug(data)
输出如下:
╰─➤ python -u "/Users/ponponon/Desktop/code/me/ideaboom/main.py"
2022-11-15 15:18:37.653 | DEBUG | __main__:<module>:67 - [datetime.datetime(2022, 2, 27, 0, 0), datetime.datetime(2022, 2, 28, 0, 0), datetime.datetime(2022, 3, 1, 0, 0), datetime.datetime(2022, 3, 2, 0, 0), datetime.datetime(2022, 3, 3, 0, 0), datetime.datetime(2022, 3, 4, 0, 0), datetime.datetime(2022, 3, 5, 0, 0), datetime.datetime(2022, 3, 6, 0, 0), datetime.datetime(2022, 3, 7, 0, 0), datetime.datetime(2022, 3, 8, 0, 0)]
使用 arrow 这个第三方库
import arrow from loguru import logger from pydantic.datetime_parse import parse_datetime for crawl_date in arrow.Arrow.range('day', parse_datetime('2022-02-27 00:00:00'), parse_datetime('2022-03-10 00:00:00')): logger.debug(crawl_date.datetime)
输出如下:
╰─➤ python -u "/Users/ponponon/Desktop/code/me/ideaboom/datetime_arrow_range.py"
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-02-27 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-02-28 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-01 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-02 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-03 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-04 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-05 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-06 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-07 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-08 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-09 00:00:00+00:00
2022-11-15 15:28:52.130 | DEBUG | __main__:<module>:6 - 2022-03-10 00:00:00+00:00
补充
当然,Python还有很多生成不同要求的时间序列的方法,下面小编为大家整理了一些,希望对大家有所帮助
生成不同间隔的时间序列
import pandas as pd import numpy as np import datetime as dt # 从2022-07-01开始,间隔3天,生成10条 时间数据 rng = pd.date_range('2022-07-01', periods = 10, freq = '3D') print(rng) print("#####################") # 指定开始时间,结束时间 以及频率 data=pd.date_range('2022-01-01','2023-01-01',freq='M') print(data) print("#####################") # 从2022-01-01开始,间隔1天,生成20条 时间数据 time=pd.Series(np.random.randn(20), index=pd.date_range(dt.datetime(2022,1,1),periods=20)) print(time) print("#####################") # 不规则的时间间隔 p1 = pd.period_range('2022-01-01 10:10', freq = '25H', periods = 10) print(p1) print("######################################") # 指定索引 rng = pd.date_range('2022 Jul 1', periods = 10, freq = 'D') print(pd.Series(range(len(rng)), index = rng)) print("######################################")
测试记录:
DatetimeIndex(['2022-07-01', '2022-07-04', '2022-07-07', '2022-07-10',
'2022-07-13', '2022-07-16', '2022-07-19', '2022-07-22',
'2022-07-25', '2022-07-28'],
dtype='datetime64[ns]', freq='3D')
#####################
DatetimeIndex(['2022-01-31', '2022-02-28', '2022-03-31', '2022-04-30',
'2022-05-31', '2022-06-30', '2022-07-31', '2022-08-31',
'2022-09-30', '2022-10-31', '2022-11-30', '2022-12-31'],
dtype='datetime64[ns]', freq='M')
#####################
2022-01-01 -0.957412
2022-01-02 -0.333720
2022-01-03 1.079960
2022-01-04 0.050675
2022-01-05 0.270313
2022-01-06 -0.222715
2022-01-07 -0.560258
2022-01-08 1.009430
2022-01-09 -0.678157
2022-01-10 0.213557
2022-01-11 -0.720791
2022-01-12 0.332096
2022-01-13 -0.986449
2022-01-14 -0.357303
2022-01-15 -0.559618
2022-01-16 0.480281
2022-01-17 -0.443998
2022-01-18 1.541631
2022-01-19 -0.094559
2022-01-20 1.875012
Freq: D, dtype: float64
#####################
PeriodIndex(['2022-01-01 10:00', '2022-01-02 11:00', '2022-01-03 12:00',
'2022-01-04 13:00', '2022-01-05 14:00', '2022-01-06 15:00',
'2022-01-07 16:00', '2022-01-08 17:00', '2022-01-09 18:00',
'2022-01-10 19:00'],
dtype='period[25H]', freq='25H')
######################################
2022-07-01 0
2022-07-02 1
2022-07-03 2
2022-07-04 3
2022-07-05 4
2022-07-06 5
2022-07-07 6
2022-07-08 7
2022-07-09 8
2022-07-10 9
Freq: D, dtype: int64
######################################
截断时间段
import pandas as pd import numpy as np import datetime as dt # 从2022-01-01开始,间隔1天,生成20条 时间数据 time=pd.Series(np.random.randn(20), index=pd.date_range(dt.datetime(2022,1,1),periods=20)) print(time) print("#####################") # 只输出2022-01-10 之后的数据 print(time.truncate(before='2022-1-10')) print("#####################") # 只输出2022-01-10 之后的数据 print(time.truncate(after='2022-1-10')) print("#####################") # 输出区间段 print(time['2022-01-15':'2022-01-20']) print("#####################")
测试记录:
2022-01-01 -0.203552
2022-01-02 -1.035483
2022-01-03 0.252587
2022-01-04 -1.046993
2022-01-05 0.152435
2022-01-06 -0.534518
2022-01-07 0.770170
2022-01-08 -0.038129
2022-01-09 0.531485
2022-01-10 0.499937
2022-01-11 0.815295
2022-01-12 2.315740
2022-01-13 -0.443379
2022-01-14 -0.689247
2022-01-15 0.667250
2022-01-16 -2.067246
2022-01-17 -0.105151
2022-01-18 -0.420562
2022-01-19 1.012943
2022-01-20 0.509710
Freq: D, dtype: float64
#####################
2022-01-10 0.499937
2022-01-11 0.815295
2022-01-12 2.315740
2022-01-13 -0.443379
2022-01-14 -0.689247
2022-01-15 0.667250
2022-01-16 -2.067246
2022-01-17 -0.105151
2022-01-18 -0.420562
2022-01-19 1.012943
2022-01-20 0.509710
Freq: D, dtype: float64
#####################
2022-01-01 -0.203552
2022-01-02 -1.035483
2022-01-03 0.252587
2022-01-04 -1.046993
2022-01-05 0.152435
2022-01-06 -0.534518
2022-01-07 0.770170
2022-01-08 -0.038129
2022-01-09 0.531485
2022-01-10 0.499937
Freq: D, dtype: float64
#####################
2022-01-15 0.667250
2022-01-16 -2.067246
2022-01-17 -0.105151
2022-01-18 -0.420562
2022-01-19 1.012943
2022-01-20 0.509710
Freq: D, dtype: float64
#####################
到此这篇关于Python按天实现生成时间范围序列的方法详解的文章就介绍到这了,更多相关Python时间范围序列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Tensorflow 定义变量,函数,数值计算等名字的更新方式
今天小编就为大家分享一篇Tensorflow 定义变量,函数,数值计算等名字的更新方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-02-02用python + hadoop streaming 分布式编程(一) -- 原理介绍,样例程序与本地调试
Hadoop 是一个实现了 MapReduce 计算模型的开源分布式并行编程框架,借助于 Hadoop, 程序员可以轻松地编写分布式并行程序,将其运行于计算机集群上,完成海量数据的计算。2014-07-07
最新评论