JDK基于CAS实现原子类盘点解析

 更新时间:2022年12月06日 10:52:21   作者:JAVA旭阳  
这篇文章主要为大家介绍了JDK基于CAS实现原子类盘点解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前言

JDK中提供了一系列的基于CAS实现的原子类,CAS 的全称是Compare-And-Swap,底层是lock cmpxchg指令,可以在单核和多核 CPU 下都能够保证比较交换的原子性。所以说,这些原子类都是线程安全的,而且是无锁并发,线程不会频繁上下文切换,所以在某些场景下性能是优于加锁。

本文就盘点一下JDK中的原子类,方便我们后续拿来使用。

基础原子类

  • AtomicInteger:Integer整数类型的原子操作类
  • AtomicBoolean:Boolean类型的原子操作类
  • AtomicLong:Long类型的原子操作类

这边以AtomicInteger讲解下它的API和用法。

构造方法:

  • public AtomicInteger():初始化一个默认值为 0 的原子型 Integer
  • public AtomicInteger(int initialValue):初始化一个指定值的原子型 Integer

常用API:

  • public final int get(): 获取 AtomicInteger 的值
  • public final int getAndIncrement(): 以原子方式将当前值加 1,返回的是自增前的值
  • public final int incrementAndGet():以原子方式将当前值加 1,返回的是自增后的值
  • public final int getAndSet(int value):以原子方式设置为 newValue 的值,返回旧值
  • public final int addAndGet(int data):以原子方式将输入的数值与实例中的值相加并返回

使用:

  • 结果1000,大致说明并发情况下保证了线程安全

原理分析:

整体实现思路: 自旋(循环) + CAS算法

  • 当旧的预期值 A == 内存值 V 此时可以修改,将 V 改为 B
  • 当旧的预期值 A != 内存值 V 此时不能修改,并重新获取现在的最新值,重新获取的动作就是自旋
public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
 }
  • valueOffset:偏移量表示该变量值相对于当前对象地址的偏移,Unsafe 就是根据内存偏移地址获取数据

  • 从主内存中拷贝到工作内存中的值(每次都要从主内存拿到最新的值到本地内存),然后执行 compareAndSwapInt() 再和主内存的值进行比较,假设方法返回 false,那么就一直执行 while 方法,直到期望的值和真实值一样,修改数据。

  • 原子类AtomicIntegervalue属性是volatile类型,保证了多线程之间的内存可见性,避免线程从工作缓存中获取失效的变量。

原子引用

原子引用主要是对对象的原子操作,原子引用类分为AtomicReferenceAtomicStampedReferenceAtomicMarkableReference。它们之间有什么区别呢?

  • AtomicReference类

普通的原子类对象

public class AtomicReferenceDemo {
    public static void main(String[] args) {
        User user1 = new User("旭阳");
        // 创建原子引用包装类
        AtomicReference<User> atomicReference = new AtomicReference<>(user1);
        while (true) {
            User user2 = new User("alvin");
            // 比较并交换
            if (atomicReference.compareAndSet(user1, user2)) {
                break;
            }
        }
        System.out.println(atomicReference.get());
    }
}
@Data
@AllArgsConstructor
@ToString
class User {
    private String name;
}
  • 调用compareAndSet()方法进行比较替换对象

ABA问题

但是如果使用AtomicReference类,会有一个ABA问题。什么意思呢?就是一个线程将共享变量从A改成B, 后面又改回A, 这是,另外一个线程就无法感知这个变化过程,就傻傻的比较,就以为没有变化,还是一开始的A,就替换了。 实际的确存在这样只要共享变量发生过变化,就要CAS失败,有什么办法呢?

  • AtomicStampedReference类

带版本号的原子类对象

@Slf4j(topic = "a.AtomicStampedReferenceTest")
public class AtomicStampedReferenceTest {
    // 构造AtomicStampedReference
    static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);
    public static void main(String[] args) throws InterruptedException {
        log.debug("main start...");
        // 获取值 A
        String prev = ref.getReference();
        // 获取版本号
        int stamp = ref.getStamp();
        log.debug("版本 {}", stamp);
        // 如果中间有其它线程干扰,发生了 ABA 现象
        other();
        Thread.sleep(1000);
        // 尝试改为 C
        log.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1));
    }
    private static void other() throws InterruptedException {
        new Thread(() -> {
            log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B",
                    ref.getStamp(), ref.getStamp() + 1));
            log.debug("更新版本为 {}", ref.getStamp());
        }, "t1").start();
        Thread.sleep(500);
        new Thread(() -> {
            log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A",
                    ref.getStamp(), ref.getStamp() + 1));
            log.debug("更新版本为 {}", ref.getStamp());
        }, "t2").start();
    }
}

  • 虽然对象的值变回了A,但是由于版本变了,所以主线程CAS失败
  • AtomicMarkableReference 类

其实有时候并不关心共享变量修改了几次,而是只要标记下是否发生过更改,是否加个标记即可,所以就有了AtomicMarkableReference类。

@Slf4j(topic = "c.AtomicMarkableReferenceTest")
public class AtomicMarkableReferenceTest {
    // 构造 AtomicMarkableReference, 初始标记为false
    static AtomicMarkableReference<String> ref = new AtomicMarkableReference<>("A", false);
    public static void main(String[] args) throws InterruptedException {
        log.debug("main start...");
        other();
        Thread.sleep(1000);
        // 看看是否发生了变化
        log.debug("change {}", ref.isMarked());
    }
    private static void other() throws InterruptedException {
        new Thread(() -> {
            log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B",
                    false, true));
        }, "t1").start();
        Thread.sleep(500);
        new Thread(() -> {
            log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A",
                    true, true));
        }, "t2").start();
    }
}

  • 通过调用isMarked()方法查看是否发生变化。

原子数组

  • AtomicIntegerArray: Integer类型的原子数组
  • AtomicLongArray:Long类型的原子数组
  • AtomicReferenceArray:引用类型的原子数组

直接上例子

public class AtomicIntegerArrayTest {
    public static void main(String[] args) throws Exception{
        AtomicIntegerArray array = new AtomicIntegerArray(10);
        Thread t1 = new Thread(()->{
            int index;
            for(int i=1; i<100000; i++) {
                index = i%10; //范围0~9
                array.incrementAndGet(index);
            }
        });
        Thread t2 = new Thread(()->{
            int index;
            for(int i=1; i<100000; i++) {
                index = i%10; //范围0~9
                array.decrementAndGet(index);
            }
        });
        t1.start();
        t2.start();
        Thread.sleep(5 * 1000);
        System.out.println(array.toString());
    }
}

  • 两个线程同时对数组对象进行加和减的操作,最终结果都是0,说明线程安全。

原子字段更新器

AtomicReferenceFieldUpdater

AtomicIntegerFieldUpdater

AtomicLongFieldUpdater

利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,否则会出现异常。

@Data
public class AtomicReferenceFieldUpdaterTest {
    private volatile int age = 10;
    private int age2;
    public static void main(String[] args) {
        AtomicIntegerFieldUpdater integerFieldUpdater = AtomicIntegerFieldUpdater.newUpdater(AtomicReferenceFieldUpdaterTest.class, "age");
        AtomicReferenceFieldUpdaterTest ref = new AtomicReferenceFieldUpdaterTest();
        // 对volatile 的age字段+1
        integerFieldUpdater.getAndIncrement(ref);
        System.out.println(ref.getAge());
        // 修改 非volatile的age2
        integerFieldUpdater = AtomicIntegerFieldUpdater.newUpdater(AtomicReferenceFieldUpdaterTest.class, "age2");
        integerFieldUpdater.getAndIncrement(ref);
    }
}

  • 原子字段更新器只能更新volatile字段,它可以保证可见性,但是无法保证原子性。

原子累加器

原子累加器主要是用来做累加的,相关的类有LongAdderDoubleAdderLongAccumulatorDoubleAccumulator

LongAdder是jdk1.8中引入的,它的性能要比AtomicLong方式好。

LongAddr 类是 LongAccumulator 类的一个特例,只是 LongAccumulator 提供了更强大的功能,可以自定义累加规则,当accumulatorFunction 为 null 时就等价于 LongAddr

这边做个性能的对比例子。

public class LongAdderTest {
    public static void main(String[] args) {
        System.out.println("LongAdder ...........");
        for (int i = 0; i < 5; i++) {
            addFunc(() -> new LongAdder(), adder -> adder.increment());
        }
        System.out.println("AtomicLong ...........");
        for (int i = 0; i < 5; i++) {
            addFunc(() -> new AtomicLong(), adder -> adder.getAndIncrement());
        }
    }
    private static <T> void addFunc(Supplier<T> adderSupplier, Consumer<T> action) {
        T adder = adderSupplier.get();
        long start = System.nanoTime();
        List<Thread> ts = new ArrayList<>();
        // 40个线程,每人累加 50 万
        for (int i = 0; i < 40; i++) {
            ts.add(new Thread(() -> {
                for (int j = 0; j < 500000; j++) {
                    action.accept(adder);
                }
            }));
        }
        ts.forEach(t -> t.start());
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end = System.nanoTime();
        System.out.println(adder + " cost:" + (end - start)/1000_000);
    }
}

主要是由于LongAdder会设置多个累加单元,Therad-0 累加 Cell[0],而 Thread-1 累加Cell[1]... 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能。

总结

本文总结了JDK中提供的各种原子类,包括基础原子类、原子引用类、原子数组类、原子字段更新器和原子累加器等。有时候,使用这些原子类的性能是比加锁要高的,特别是在读多写少的场景下。但是,不知道大家发现没有,所有的原子类操作对于一个共享变量执行操作是原子的,如果对于多个共享变量操作时,循环 CAS 就无法保证操作的原子性,还是老老实实加锁吧,更多关于JDK CAS原子类的资料请关注脚本之家其它相关文章!

相关文章

  • Spring Boot项目启动报错Unable to start web server解决方法

    Spring Boot项目启动报错Unable to start web server解决方法

    这篇文章主要给大家介绍了关于Spring Boot项目启动报错Unable to start web server的解决方法,错误内容大概的意思是未能加载嵌入的供web应用加载的空间,是因为缺少ServletWebServerFactorybean,需要的朋友可以参考下
    2024-07-07
  • Java实现实时视频转播的代码示例

    Java实现实时视频转播的代码示例

    这篇文章主要给大家详细介绍了Java如何实现实时视频转播,文中通过代码实例介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴可以自己动手试一试
    2023-09-09
  • Java 离线中文语音文字识别功能的实现代码

    Java 离线中文语音文字识别功能的实现代码

    这篇文章主要介绍了Java 离线中文语音文字识别,本次使用springboot +maven实现,官方demo为springboot+gradle,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-07-07
  • Spring中的接口重试机制spring-retry之listeners参数解析

    Spring中的接口重试机制spring-retry之listeners参数解析

    这篇文章主要介绍了Spring中的接口重试机制spring-retry之listeners参数解析,注解@Retryable有一个参数listeners没有说明,那么本篇文章我们详细介绍一个这个参数的用,需要的朋友可以参考下
    2024-01-01
  • MyBatis SqlMapConfig.xml配置

    MyBatis SqlMapConfig.xml配置

    MyBatis 的核心配置文件SqlMapConfig.xml,接下来通过本文给大家介绍MyBatis SqlMapConfig.xml配置,非常不错,感兴趣的朋友一起学习吧
    2016-08-08
  • Java如何读取配置文件并赋值静态变量

    Java如何读取配置文件并赋值静态变量

    这篇文章主要介绍了Java如何读取配置文件并赋值静态变量,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-10-10
  • Springboot连接和操作mongoDB方式

    Springboot连接和操作mongoDB方式

    这篇文章主要介绍了Springboot连接和操作mongoDB方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-01-01
  • SpringBoot集成JWT实现token验证的流程

    SpringBoot集成JWT实现token验证的流程

    Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).这篇文章主要介绍了SpringBoot集成JWT实现token验证,需要的朋友可以参考下
    2020-01-01
  • Java-ElementUi中的row-class-name使用

    Java-ElementUi中的row-class-name使用

    这篇文章主要介绍了Java-ElementUi中的row-class-name使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-08-08
  • Java中使用Jedis操作Redis的示例代码

    Java中使用Jedis操作Redis的示例代码

    本篇文章主要介绍了Java中使用Jedis操作Redis的示例代码,具有一定的参考价值,有兴趣的可以了解一下。
    2016-12-12

最新评论