Python使用TextRank算法提取关键词
TextRank 是一种基于 PageRank 的算法,常用于关键词提取和文本摘要。在本文中,我将通过一个关键字提取示例帮助您了解 TextRank 如何工作,并展示 Python 的实现。
使用 TextRank、NER 等进行关键词提取
1.PageRank简介
关于 PageRank 的文章有很多,我只简单介绍一下 PageRank。这将有助于我们稍后理解 TextRank,因为它是基于 PageRank 的。
PageRank (PR) 是一种用于计算网页权重的算法。我们可以把所有的网页看成一个大的有向图。在此图中,节点是网页。如果网页 A 有指向网页 B 的链接,则它可以表示为从 A 到 B 的有向边。
构建完整个图后,我们可以通过以下公式为网页分配权重。
这是一个示例,可以更好地理解上面的符号。我们有一个图表来表示网页如何相互链接。每个节点代表一个网页,箭头代表边。我们想得到网页 e 的权重。
我们可以将上述函数中的求和部分重写为更简单的版本。
我们可以通过下面的函数得到网页 e 的权重。
我们可以看到网页 e 的权重取决于其入站页面的权重。我们需要多次运行此迭代才能获得最终权重。初始化时,每个网页的重要性为 1。
2.PageRank实现
我们可以用一个矩阵来表示图中 a、b、e、f 之间的入站和出站链接。
一行中的每个节点表示来自其他节点的入站链接。例如,对于 e 行,节点 a 和 b 具有指向节点 e 的出站链接。本演示文稿将简化更新权重的计算。
根据
从函数中,我们应该规范化每一列。
我们使用这个矩阵乘以所有节点的权重。
这只是一次没有阻尼系数 d 的迭代。
我们可以使用 Python 进行多次迭代。
import numpy as np g = [[0, 0, 0, 0], [0, 0, 0, 0], [1, 0.5, 0, 0], [0, 0.5, 0, 0]] g = np.array(g) pr = np.array([1, 1, 1, 1]) # initialization for a, b, e, f is 1 d = 0.85 for iter in range(10): pr = 0.15 + 0.85 * np.dot(g, pr) print(iter) print(pr)
0
[0.15 0.15 1.425 0.575]
1
[0.15 0.15 0.34125 0.21375]
2
[0.15 0.15 0.34125 0.21375]
3
[0.15 0.15 0.34125 0.21375]
4
[0.15 0.15 0.34125 0.21375]
5
[0.15 0.15 0.34125 0.21375]
6
[0.15 0.15 0.34125 0.21375]
7
[0.15 0.15 0.34125 0.21375]
8
[0.15 0.15 0.34125 0.21375]
9
[0.15 0.15 0.34125 0.21375]
10
[0.15 0.15 0.34125 0.21375]
所以 e 的权重(PageRank值)为 0.34125。
如果我们把有向边变成无向边,我们就可以相应地改变矩阵。
规范化。
我们应该相应地更改代码。
import numpy as np g = [[0, 0, 0.5, 0], [0, 0, 0.5, 1], [1, 0.5, 0, 0], [0, 0.5, 0, 0]] g = np.array(g) pr = np.array([1, 1, 1, 1]) # initialization for a, b, e, f is 1 d = 0.85 for iter in range(10): pr = 0.15 + 0.85 * np.dot(g, pr) print(iter) print(pr)
0
[0.575 1.425 1.425 0.575]
1
[0.755625 1.244375 1.244375 0.755625]
2
[0.67885937 1.32114062 1.32114062 0.67885937]
3
[0.71148477 1.28851523 1.28851523 0.71148477]
4
[0.69761897 1.30238103 1.30238103 0.69761897]
5
[0.70351194 1.29648806 1.29648806 0.70351194]
6
[0.70100743 1.29899257 1.29899257 0.70100743]
7
[0.70207184 1.29792816 1.29792816 0.70207184]
8
[0.70161947 1.29838053 1.29838053 0.70161947]
9
[0.70181173 1.29818827 1.29818827 0.70181173]
所以 e 的权重(PageRank值)为 1.29818827。
3.TextRank原理
TextRank 和 PageTank 有什么区别呢?
简而言之 PageRank 用于网页排名,TextRank 用于文本排名。 PageRank 中的网页就是 TextRank 中的文本,所以基本思路是一样的。
我们将一个文档分成几个句子,我们只存储那些带有特定 POS 标签的词。我们使用 spaCy 进行词性标注。
import spacy nlp = spacy.load('en_core_web_sm') content = ''' The Wandering Earth, described as China's first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China's traditionally grand, massive historical epics. At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking. While the film's cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse. ''' doc = nlp(content) for sents in doc.sents: print(sents.text)
我们将段落分成三个句子。
The Wandering Earth, described as China’s first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China’s traditionally grand, massive historical epics.
At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking.
While the film’s cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse.
因为句子中的大部分词对确定重要性没有用,我们只考虑带有 NOUN、PROPN、VERB POS 标签的词。这是可选的,你也可以使用所有的单词。
candidate_pos = ['NOUN', 'PROPN', 'VERB'] sentences = [] for sent in doc.sents: selected_words = [] for token in sent: if token.pos_ in candidate_pos and token.is_stop is False: selected_words.append(token) sentences.append(selected_words) print(sentences)
[[Wandering, Earth, described, China, budget, science, fiction, thriller, screens, AMC, theaters, North, America, weekend, shows, filmmaking, focused, spectacles, China, epics],
[time, Wandering, Earth, feels, throwback, eras, filmmaking],
[film, cast, setting, tone, science, fiction, fans, going, lot, screen, reminds, movies]]
每个词都是 PageRank 中的一个节点。我们将窗口大小设置为 k。
[ w 1 , w 2 , … , w k ] , [ w 2 , w 3 , … , w k + 1 ] , [ w 3 , w 4 , … , w k + 2 ] [w1, w2, …, w_k], [w2, w3, …, w_{k+1}], [w3, w4, …, w_{k+2}] [w1,w2,…,wk],[w2,w3,…,wk+1],[w3,w4,…,wk+2] 是窗口。窗口中的任何两个词对都被认为具有无向边。
我们以 [time, wandering, earth, feels, throwback, era, filmmaking]
为例,设置窗口大小 k = 4 k=4 k=4,所以得到 4 个窗口,[time, Wandering, Earth, feels]
,[Wandering, Earth, feels, throwback]
,[Earth, feels, throwback, eras]
,[feels, throwback, eras, filmmaking]
。
对于窗口 [time, Wandering, Earth, feels]
,任何两个词对都有一条无向边。所以我们得到 (time, Wandering)
,(time, Earth)
,(time, feels)
,(Wandering, Earth)
,(Wandering, feels)
,(Earth, feels)
。
基于此图,我们可以计算每个节点(单词)的权重。最重要的词可以用作关键字。
4.TextRank提取关键词
这里我用 Python 实现了一个完整的例子,我们使用 spaCy 来获取词的词性标签。
from collections import OrderedDict import numpy as np import spacy from spacy.lang.en.stop_words import STOP_WORDS nlp = spacy.load('en_core_web_sm') class TextRank4Keyword(): """Extract keywords from text""" def __init__(self): self.d = 0.85 # damping coefficient, usually is .85 self.min_diff = 1e-5 # convergence threshold self.steps = 10 # iteration steps self.node_weight = None # save keywords and its weight def set_stopwords(self, stopwords): """Set stop words""" for word in STOP_WORDS.union(set(stopwords)): lexeme = nlp.vocab[word] lexeme.is_stop = True def sentence_segment(self, doc, candidate_pos, lower): """Store those words only in cadidate_pos""" sentences = [] for sent in doc.sents: selected_words = [] for token in sent: # Store words only with cadidate POS tag if token.pos_ in candidate_pos and token.is_stop is False: if lower is True: selected_words.append(token.text.lower()) else: selected_words.append(token.text) sentences.append(selected_words) return sentences def get_vocab(self, sentences): """Get all tokens""" vocab = OrderedDict() i = 0 for sentence in sentences: for word in sentence: if word not in vocab: vocab[word] = i i += 1 return vocab def get_token_pairs(self, window_size, sentences): """Build token_pairs from windows in sentences""" token_pairs = list() for sentence in sentences: for i, word in enumerate(sentence): for j in range(i+1, i+window_size): if j >= len(sentence): break pair = (word, sentence[j]) if pair not in token_pairs: token_pairs.append(pair) return token_pairs def symmetrize(self, a): return a + a.T - np.diag(a.diagonal()) def get_matrix(self, vocab, token_pairs): """Get normalized matrix""" # Build matrix vocab_size = len(vocab) g = np.zeros((vocab_size, vocab_size), dtype='float') for word1, word2 in token_pairs: i, j = vocab[word1], vocab[word2] g[i][j] = 1 # Get Symmeric matrix g = self.symmetrize(g) # Normalize matrix by column norm = np.sum(g, axis=0) g_norm = np.divide(g, norm, where=norm!=0) # this is ignore the 0 element in norm return g_norm def get_keywords(self, number=10): """Print top number keywords""" node_weight = OrderedDict(sorted(self.node_weight.items(), key=lambda t: t[1], reverse=True)) for i, (key, value) in enumerate(node_weight.items()): print(key + ' - ' + str(value)) if i > number: break def analyze(self, text, candidate_pos=['NOUN', 'PROPN'], window_size=4, lower=False, stopwords=list()): """Main function to analyze text""" # Set stop words self.set_stopwords(stopwords) # Pare text by spaCy doc = nlp(text) # Filter sentences sentences = self.sentence_segment(doc, candidate_pos, lower) # list of list of words # Build vocabulary vocab = self.get_vocab(sentences) # Get token_pairs from windows token_pairs = self.get_token_pairs(window_size, sentences) # Get normalized matrix g = self.get_matrix(vocab, token_pairs) # Initionlization for weight(pagerank value) pr = np.array([1] * len(vocab)) # Iteration previous_pr = 0 for epoch in range(self.steps): pr = (1-self.d) + self.d * np.dot(g, pr) if abs(previous_pr - sum(pr)) < self.min_diff: break else: previous_pr = sum(pr) # Get weight for each node node_weight = dict() for word, index in vocab.items(): node_weight[word] = pr[index] self.node_weight = node_weight
这个 TextRank4Keyword
实现了前文描述的相关功能。我们可以看到一段的输出。
text = ''' The Wandering Earth, described as China's first big-budget science fiction thriller, quietly made it onto screens at AMC theaters in North America this weekend, and it shows a new side of Chinese filmmaking — one focused toward futuristic spectacles rather than China's traditionally grand, massive historical epics. At the same time, The Wandering Earth feels like a throwback to a few familiar eras of American filmmaking. While the film's cast, setting, and tone are all Chinese, longtime science fiction fans are going to see a lot on the screen that reminds them of other movies, for better or worse. ''' tr4w = TextRank4Keyword() tr4w.analyze(text, candidate_pos = ['NOUN', 'PROPN'], window_size=4, lower=False) tr4w.get_keywords(10)
science - 1.717603106506989
fiction - 1.6952610926181002
filmmaking - 1.4388798751402918
China - 1.4259793786986021
Earth - 1.3088154732297723
tone - 1.1145002295684114
Chinese - 1.0996896235078055
Wandering - 1.0071059904601571
weekend - 1.002449354657688
America - 0.9976329264870932
budget - 0.9857269586649321
North - 0.9711240881032547
到此这篇关于Python使用TextRank算法提取关键词的文章就介绍到这了,更多相关Python TextRank内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python常见库matplotlib学习笔记之多个子图绘图
Matplotlib是Python提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,下面这篇文章主要给大家介绍了关于Python常见库matplotlib学习笔记之多个子图绘图的相关资料,需要的朋友可以参考下2023-05-05详解Python的Flask框架中生成SECRET_KEY密钥的方法
密钥值的生成功能十分重要,几乎也是各大Web开发框架的标配,Flask当然也不例外,这里我们就来详解Python的Flask框架中生成SECRET_KEY密钥的方法2016-06-06
最新评论