Redis中Bloom filter布隆过滤器的学习

 更新时间:2022年12月14日 10:09:13   作者:枫灵小宇  
布隆过滤器是一个非常长的二进制向量和一系列随机哈希函数的组合,可用于检索一个元素是否存在,本文就详细的介绍一下Bloom filter布隆过滤器,具有一定的参考价值,感兴趣的可以了解一下

1.概念

​ 布隆过滤器是一个高空间利用率的概率性数据结构,主要目的是节省内存空间以及判断一个元素是否存在于一个集合中(存在误判的情况),可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率(控制参数:error_rate-误判率 initial_size-初始容量)

​ error_rate越小,越精确,需要的空间越大

​ initial_size越大,越精确,当实际数量超出这个数值时,误判率会上升

布隆过滤器可以判断某个数据一定不存在,但是无法判断一定存在

2.guava实现

2.1.依赖

<!--guava实现布隆过滤器-->
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>19.0</version>
</dependency>

2.2.初始化布隆过滤器

//初始化布隆过滤器,放入到spring容器里面
@Bean
public MyBloomFilter<String> initBloomFilterHelper() {
    return new MyBloomFilter<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8)
                               , 1000000, 0.01);
}

2.3.布隆过滤器

package com.qin.redis.bloomfilter;
import com.google.common.base.Preconditions;
import com.google.common.hash.Funnel;
import com.google.common.hash.Hashing;
/**
 * @version: V1.0.0
 * @className: MyBloomFilter
 */
public class MyBloomFilter<T> {
    private int numHashFunctions;
    private int bitSize;
    private Funnel<T> funnel;
    public MyBloomFilter(Funnel<T> funnel, int expectedInsertions, double fpp) {
        Preconditions.checkArgument(funnel != null, "funnel不能为空");
        this.funnel = funnel;
        // 计算bit数组长度
        bitSize = optimalNumOfBits(expectedInsertions, fpp);
        // 计算hash方法执行次数
        numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize);
    }
    public int[] murmurHashOffset(T value) {
        int[] offset = new int[numHashFunctions];
        long hash64 = Hashing.murmur3_128().hashObject(value, funnel).asLong();
        int hash1 = (int) hash64;
        int hash2 = (int) (hash64 >>> 32);
        for (int i = 1; i <= numHashFunctions; i++) {
            int nextHash = hash1 + i * hash2;
            if (nextHash < 0) {
                nextHash = ~nextHash;
            }
            offset[i - 1] = nextHash % bitSize;
        }
        return offset;
    }
    /**
     * 计算bit数组长度
     */
    private int optimalNumOfBits(long n, double p) {
        if (p == 0) {
            // 设定最小期望长度
            p = Double.MIN_VALUE;
        }
        int sizeOfBitArray = (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
        return sizeOfBitArray;
    }
    /**
     * 计算hash方法执行次数
     */
    private static int optimalNumOfHashFunctions(long n, long m) {
        int countOfHash = Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
        return countOfHash;
    }
    public static void main(String[] args) {
        System.out.println(optimalNumOfHashFunctions(1000000000L, 123450000L));
    }
}

2.4.添加元素或者判断是否存在

package com.qin.redis.bloomfilter.service;
import com.google.common.base.Preconditions;
import com.hikvison.aksk.redis.bloomfilter.MyBloomFilter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
/**
 * @version: V1.0.0
 * @className: RedisBloomFilterService
 */
@Service
public class RedisBloomFilterService {
    @Autowired
    private RedisTemplate redisTemplate;
    /**
     * 根据给定的布隆过滤器添加值
     */
    public <T> void addByBloomFilter(MyBloomFilter<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "myBloomFilter不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            redisTemplate.opsForValue().setBit(key, i, true);
        }
    }
    /**
     * 根据给定的布隆过滤器判断值是否存在
     */
    public <T> boolean includeByBloomFilter(MyBloomFilter<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "myBloomFilter不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            if (!redisTemplate.opsForValue().getBit(key, i)) {
                return false;
            }
        }
        return true;
    }
}

3.Redisson实现

3.1.依赖

<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>2.7.0</version>
</dependency>

3.2.注入或测试

 //单机模式:可以设置集群、哨兵模式
    @Bean
    public Redisson redisson() {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1:6379");
        RedissonClient redissonClient = Redisson.create(config);
        //初始化过滤器
        RBloomFilter<Object> bloomFilter = redissonClient.getBloomFilter("testBloomFilter");
        bloomFilter.tryInit(1000000L,0.05);
        //插入元素
        bloomFilter.add("zhangsan");
        bloomFilter.add("lisi");
        //判断元素是否存在
        boolean flag = bloomFilter.contains("lisi");
        return (Redisson) redissonClient;
    }

到此这篇关于Redis中Bloom filter布隆过滤器的学习的文章就介绍到这了,更多相关Redis布隆过滤器内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Centos 7 如何安装Redis(推荐)

    Centos 7 如何安装Redis(推荐)

    这篇文章主要介绍了Centos 7 如何安装Redis,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • Redis用GEO实现附近的人功能

    Redis用GEO实现附近的人功能

    GEO就是Geolocation的简写形式,代表地理坐标,这篇文章主要介绍了Redis用GEO实现附近的人功能,需要的朋友可以参考下
    2024-08-08
  • Redis不仅仅是缓存,还是……

    Redis不仅仅是缓存,还是……

    Redis是一个开源的(BSD协议),内存中的数据结构存储,它可以用作数据库,缓存,消息代理。这篇文章主要介绍了Redis不仅仅是缓存,还是……,需要的朋友可以参考下
    2020-12-12
  • Redis解决跨域存取Session问题

    Redis解决跨域存取Session问题

    本文主要介绍了Redis解决跨域存取Session问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-04-04
  • 将MongoDB作为Redis式的内存数据库的使用方法

    将MongoDB作为Redis式的内存数据库的使用方法

    这篇文章主要介绍了将MongoDB作为Redis式的内存数据库的使用方法,原理其实只是将内存虚拟作为磁盘,需要的朋友可以参考下
    2015-06-06
  • 浅谈Redis的事件驱动模型

    浅谈Redis的事件驱动模型

    本文主要介绍了浅谈Redis的事件驱动模型,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • Redis中的BigKey问题排查与解决思路详解

    Redis中的BigKey问题排查与解决思路详解

    Redis是一款性能强劲的内存数据库,但是在使用过程中,我们可能会遇到Big Key问题,这个问题就是Redis中某个key的value过大,所以Big Key问题本质是Big Value问题,这篇文章主要介绍了Redis中的BigKey问题:排查与解决思路,需要的朋友可以参考下
    2023-03-03
  • 手动实现Redis的LRU缓存机制示例详解

    手动实现Redis的LRU缓存机制示例详解

    这篇文章主要介绍了手动实现Redis的LRU缓存机制示例详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • Redis RDB技术底层原理详解

    Redis RDB技术底层原理详解

    为了使Redis在重启之后仍能保证数据不丢失,需要将数据从内存中以某种形式同步到硬盘中,这一过程就是持久化,本文重点给大家介绍Redis RDB技术底层原理实现方法,一起看看吧
    2021-09-09
  • 通俗易懂的Redis数据结构基础教程(入门)

    通俗易懂的Redis数据结构基础教程(入门)

    这篇文章主要介绍了通俗易懂的Redis数据结构基础教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03

最新评论