tensorflow使用tf.data.Dataset 处理大型数据集问题
最近深度学习用到的数据集比较大,如果一次性将数据集读入内存,那服务器是顶不住的,所以需要分批进行读取,这里就用到了tf.data.Dataset构建数据集:
概括一下,tf.data.Dataset主要有几个部分最重要:
- 构建生成器函数
- 使用tf.data.Dataset的from_generator函数,通过指定数据类型,数据的shape等参数,构建一个Dataset
- 指定batch_size
- 使用make_one_shot_iterator()函数,构建一个iterator
- 使用上面构建的迭代器开始get_next() 。(必须要有这个get_next(),迭代器才会工作)
一.构建生成器
生成器的要点是要在while True中加入yield,yield的功能有点类似return,有yield才能起到迭代的作用。
我的数据是一个[6047, 6000, 1]的文本数据,我每次迭代返回的shape为[1,6000,1],要注意的是返回的shape要和构建Dataset时的shape一致,下面会说到。
代码如下:
def gen(): train=pd.read_csv('/home/chenqiren/PycharmProjects/code/test/formal/small_sample/train2.csv', header=None) train.fillna(0, inplace = True) label_encoder = LabelEncoder().fit(train[6000]) label = label_encoder.transform(train[6000]) train = train.drop([6000], axis=1) scaler = StandardScaler().fit(train.values) #train.values中的值是csv文件中的那些值, 这步标准化可以保留 scaled_train = scaler.transform(train.values) #print(scaled_train) #拆分训练集和测试集-------------- sss=StratifiedShuffleSplit(test_size=0.1, random_state=23) for train_index, valid_index in sss.split(scaled_train, label): #需要的是数组,train.values得到的是数组 X_train, X_valid=scaled_train[train_index], scaled_train[valid_index] #https://www.cnblogs.com/Allen-rg/p/9453949.html y_train, y_valid=label[train_index], label[valid_index] X_train_r=np.zeros((len(X_train), 6000, 1)) #先构建一个框架出来,下面再赋值 X_train_r[:,: ,0]=X_train[:,0:6000] X_valid_r=np.zeros((len(X_valid), 6000, 1)) X_valid_r[:,: ,0]=X_valid[:,0:6000] y_train=np_utils.to_categorical(y_train, 3) y_valid=np_utils.to_categorical(y_valid, 3) leng=len(X_train_r) index=0 while True: x_train_batch=X_train_r[index, :, 0:1] y_train_batch=y_train[index, :] yield (x_train_batch, y_train_batch) index=index+1 if index>leng: break
代码中while True上面的部分是标准化数据的代码,可以不用看,只需要看 while True中的代码即可。
x_train_batch, y_train_batch都只是一行的数据,这里是一行一行数据迭代。
二.使用tf.data.Dataset包装生成器
data=tf.data.Dataset.from_generator(gen_1, (tf.float32, tf.float32), (tf.TensorShape([6000,1]), tf.TensorShape([3]))) data=data.batch(128) iterator=data.make_one_shot_iterator()
这里的tf.TensorShape([6000,1]) 和 tf.TensorShape([3])中的shape要和上面生成器yield返回的数据的shape一致。
data=data.batch(128)
是设置batchsize,这里设为128,在运行时,因为我们yield的是一行的数据[1, 6000, 1],所以将会循环yield够128次,得到[128, 6000, 1],即一个batch,才会开始训练。iterator=data.make_one_shot_iterator()
是构建迭代器,one_shot迭代器人如其名,意思就是数据输出一次后就丢弃了。
三.获取生成器返回的数据
x, y=iterator.get_next() x_batch, y_batch=sess.run([x,y])
注意要有get_next(),迭代器才能开始工作。
第二行是run第一行代码。获取训练数据和训练标签。
这里做个关于yield的小笔记:
上一次迭代,yield返回了值,然后get_next()开启了下一次迭代,此时,程序是从yield处开始运行的,也就是说,如果yield后面还有程序,那就会运行yield后面的程序。一直运行的是while True中的程序,没有运行while True外面的程序。
下面是我写的总的代码。可以不用看。
import os import keras import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import train_test_split from keras.models import Sequential, Model from keras.layers import Dense, Activation, Flatten, Conv1D, Dropout, MaxPooling1D, GlobalAveragePooling1D from keras.layers import GlobalAveragePooling2D,BatchNormalization, UpSampling1D, RepeatVector,Reshape from keras.layers.core import Lambda from keras.optimizers import SGD, Adam, Adadelta from keras.utils import np_utils from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.backend import conv3d,reshape, shape, categorical_crossentropy, mean, square from keras.applications.vgg16 import VGG16 from keras.layers import Input,LSTM from keras import regularizers from keras.utils import multi_gpu_model import tensorflow as tf import keras.backend.tensorflow_backend as KTF os.environ["CUDA_VISIBLE_DEVICES"]="2" config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) keep_prob = tf.placeholder("float") # 设置session KTF.set_session(session ) #-----生成训练数据----------------------------------------------- def gen_1(): train=pd.read_csv('/home/chenqiren/PycharmProjects/code/test/formal/small_sample/train2.csv', header=None) train.fillna(0, inplace = True) label_encoder = LabelEncoder().fit(train[6000]) label = label_encoder.transform(train[6000]) train = train.drop([6000], axis=1) scaler = StandardScaler().fit(train.values) #train.values中的值是csv文件中的那些值, 这步标准化可以保留 scaled_train = scaler.transform(train.values) #print(scaled_train) #拆分训练集和测试集-------------- sss=StratifiedShuffleSplit(test_size=0.1, random_state=23) for train_index, valid_index in sss.split(scaled_train, label): #需要的是数组,train.values得到的是数组 X_train, X_valid=scaled_train[train_index], scaled_train[valid_index] #https://www.cnblogs.com/Allen-rg/p/9453949.html y_train, y_valid=label[train_index], label[valid_index] X_train_r=np.zeros((len(X_train), 6000, 1)) #先构建一个框架出来,下面再赋值 #开始赋值 #https://stackoverflow.com/questions/43290202/python-typeerror-unhashable-type-slice-for-encoding-categorical-data X_train_r[:,: ,0]=X_train[:,0:6000] X_valid_r=np.zeros((len(X_valid), 6000, 1)) X_valid_r[:,: ,0]=X_valid[:,0:6000] y_train=np_utils.to_categorical(y_train, 3) y_valid=np_utils.to_categorical(y_valid, 3) leng=len(X_train_r) index=0 while True: x_train_batch=X_train_r[index, :, 0:1] y_train_batch=y_train[index, :] yield (x_train_batch, y_train_batch) index=index+1 if index>leng: break #----生成测试数据-------------------------------------- def gen_2(): train=pd.read_csv('/home/chenqiren/PycharmProjects/code/test/formal/small_sample/train2.csv', header=None) train.fillna(0, inplace = True) label_encoder = LabelEncoder().fit(train[6000]) label = label_encoder.transform(train[6000]) train = train.drop([6000], axis=1) scaler = StandardScaler().fit(train.values) #train.values中的值是csv文件中的那些值, 这步标准化可以保留 scaled_train = scaler.transform(train.values) #print(scaled_train) #拆分训练集和测试集-------------- sss=StratifiedShuffleSplit(test_size=0.1, random_state=23) for train_index, valid_index in sss.split(scaled_train, label): #需要的是数组,train.values得到的是数组 X_train, X_valid=scaled_train[train_index], scaled_train[valid_index] #https://www.cnblogs.com/Allen-rg/p/9453949.html y_train, y_valid=label[train_index], label[valid_index] X_train_r=np.zeros((len(X_train), 6000, 1)) #先构建一个框架出来,下面再赋值 #开始赋值 #https://stackoverflow.com/questions/43290202/python-typeerror-unhashable-type-slice-for-encoding-categorical-data X_train_r[:,: ,0]=X_train[:,0:6000] X_valid_r=np.zeros((len(X_valid), 6000, 1)) X_valid_r[:,: ,0]=X_valid[:,0:6000] y_train=np_utils.to_categorical(y_train, 3) y_valid=np_utils.to_categorical(y_valid, 3) leng=len(X_valid_r) index=0 while True: x_test_batch=X_valid_r[index, :, 0:1] y_test_batch=y_valid[index, :] yield (x_test_batch, y_test_batch) index=index+1 if index>leng: break #--------------------------------------------------------------------- def custom_mean_squared_error(y_true, y_pred): return mean(square(y_pred - y_true)) def custom_categorical_crossentropy(y_true, y_pred): return categorical_crossentropy(y_true, y_pred) def loss_func(y_loss, x_loss): return categorical_crossentropy + 0.05 * mean_squared_error #建立模型 with tf.device('/cpu:0'): inputs1=tf.placeholder(tf.float32, shape=(None,6000,1)) x1=LSTM(128, return_sequences=True)(inputs1) encoded=LSTM(64 ,return_sequences=True)(x1) print('encoded shape:',shape(encoded)) #decode x1=LSTM(128, return_sequences=True)(encoded) decoded=LSTM(1, return_sequences=True,name='decode')(x1) #classify labels=tf.placeholder(tf.float32, shape=(None,3)) x2=Conv1D(20,kernel_size=50, strides=2, activation='relu' )(encoded) #步数论文中未提及,第一层 x2=MaxPooling1D(pool_size=2, strides=1)(x2) x2=Conv1D(20,kernel_size=50, strides=2, activation='relu')(x2) #第二层 x2=MaxPooling1D(pool_size=2, strides=1)(x2) x2=Dropout(0.25)(x2) x2=Conv1D(24,kernel_size=30, strides=2, activation='relu')(x2) #第三层 x2=MaxPooling1D(pool_size=2, strides=1)(x2) x2=Dropout(0.25)(x2) x2=Conv1D(24,kernel_size=30, strides=2, activation='relu')(x2) #第四层 x2=MaxPooling1D(pool_size=2, strides=1)(x2) x2=Dropout(0.25)(x2) x2=Conv1D(24,kernel_size=10, strides=2, activation='relu')(x2) #第五层 x2=MaxPooling1D(pool_size=2, strides=1)(x2) x2=Dropout(0.25)(x2) x2=Dense(192)(x2) #第一个全连接层 x2=Dense(192)(x2) #第二个全连接层 x2=Flatten()(x2) x2=Dense(3,activation='softmax', name='classify')(x2) def get_accuracy(x2, labels): current = tf.cast(tf.equal(tf.argmax(x2, 1), tf.argmax(labels, 1)), 'float') accuracy = tf.reduce_mean(current) return accuracy #实例化获取准确率函数 getAccuracy = get_accuracy(x2, labels) #定义损失函数 all_loss=tf.reduce_mean(categorical_crossentropy(x2 , labels) + tf.convert_to_tensor(0.5)*square(decoded-inputs1)) train_option=tf.train.AdamOptimizer(0.01).minimize(all_loss) #----------------------------------------- #生成训练数据 data=tf.data.Dataset.from_generator(gen_1, (tf.float32, tf.float32), (tf.TensorShape([6000,1]), tf.TensorShape([3]))) data=data.batch(128) iterator=data.make_one_shot_iterator() #生成测试数据 data2=tf.data.Dataset.from_generator(gen_2, (tf.float32, tf.float32), (tf.TensorShape([6000,1]), tf.TensorShape([3]))) data2=data2.batch(128) iterator2=data2.make_one_shot_iterator() #----------------------------------------- with tf.Session() as sess: init=tf.global_variables_initializer() sess.run(init) i=-1 for k in range(20): #----------------------------------------- x, y=iterator.get_next() x_batch, y_batch=sess.run([x,y]) print('batch shape:',x_batch.shape, y_batch.shape) #----------------------------------------- if k%2==0: print('第',k,'轮') x3=sess.run(x2, feed_dict={inputs1:x_batch, labels:y_batch }) dc=sess.run(decoded, feed_dict={inputs1:x_batch}) accuracy=sess.run(getAccuracy, feed_dict={x2:x3, labels:y_batch, keep_prob: 1.0}) loss=sess.run(all_loss, feed_dict={x2:x3, labels:y_batch, inputs1:x_batch, decoded:dc}) print("step(s): %d ----- accuracy: %g -----loss: %g" % (i, accuracy, loss)) sess.run(train_option, feed_dict={inputs1:x_batch, labels:y_batch, keep_prob: 0.5}) x, y=iterator2.get_next() x_test_batch, y_test_batch=sess.run([x,y]) print('batch shape:',x_test_batch.shape, y_test_batch.shape) x_test=sess.run(x2, feed_dict={inputs1:x_test_batch, labels:y_test_batch }) print ("test accuracy %f"%getAccuracy.eval(feed_dict={x2:x_test, labels:y_test_batch, keep_prob: 1.0}))
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
对django 2.x版本中models.ForeignKey()外键说明介绍
这篇文章主要介绍了对django 2.x版本中models.ForeignKey()外键说明介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-03-03cv2.getStructuringElement()函数及开、闭、腐蚀、膨胀原理讲解
getStructuringElement()函数可用于构造一个特定大小和形状的结构元素,用于图像形态学处理,这篇文章主要介绍了cv2.getStructuringElement()函数及开、闭、腐蚀、膨胀原理讲解的相关资料,需要的朋友可以参考下2022-12-12python机器学习XGBoost梯度提升决策树的高效且可扩展实现
这篇文章主要为大家介绍了python机器学习XGBoost梯度提升决策树的高效且可扩展实现,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2024-01-01
最新评论