Pytorch-Geometric中的Message Passing使用及说明
Pytorch-Geometric中Message Passing使用
图中的卷积计算通常被称为邻域聚合或者消息传递 (neighborhood aggregation or message passing).
定义为节点i在第(k−1)层的特征,ej,i表示节点j到节点i的边特征,在GNN中消息传递可以表示为
其中 □ 表示具有置换不变性并且可微的函数,例如 sum, mean, max 等, γ 和 ϕ 表示可微函数。
在 PyTorch Gemetric 中,所有卷积算子都是由 MessagePassing
类派生而来,理解 MessagePasing
有助于我们理解 PyG 中消息传递的计算方式和编写自定义的卷积。
在自定义卷积中,用户只需定义消息传递函数 ϕ message()
, 节点更新函数 γ update()
以及聚合方式 aggr='add', aggr='mean'
或则 aggr=max
.
具体函数说明如下
MessagePassing(aggr='add', flow='source_to_target', node_dim=-2)
定义聚合计算的方式 ('add', 'mean'
ormax
) 以及消息的传递方向 (source_to_target
ortarget_to_source
). 在 PyG 中,中心节点为目标 target,邻域节点为源 source.node_dim
为消息聚合的维度MessagePassing.propagate(edge_index, size=None, **kwargs):
该函数接受边信息edge_index
和其他额外的数据来执行消息传递并更新节点嵌入MessagePassing.message(...):
该函数的作用是计算节点消息,就是公式中的函数 ϕ \phi ϕ . 如果flow='source_to_target'
,那么消息将由邻域节点 j j j 传向中心节点 i i i ;如果flow='target_to_source'
,消息则由中心节点 i i i 传向邻域节点 j j j . 传入参数的节点类型可以通过变量名后缀来确定,例如中心节点嵌入变量一般以_i
为结尾,邻域节点嵌入变量以x_j
为结尾MessagePassing.update(arr_out, ...):
该函数为节点嵌入的更新函数 γ \gamma γ , 输入参数为聚合函数MessagePassing.aggregate
计算的结果
为了更好的理解 PyG 中 MessagePassing
的计算过程,我们来分析一下源代码。
class MessagePassing(torch.nn.Module): special_args: Set[str] = { 'edge_index', 'adj_t', 'edge_index_i', 'edge_index_j', 'size', 'size_i', 'size_j', 'ptr', 'index', 'dim_size' } def __init__(self, aggr: Optional[str] = "add", flow: str = "source_to_target", node_dim: int = -2): super(MessagePassing, self).__init__() self.aggr = aggr assert self.aggr in ['add', 'mean', 'max', None] self.flow = flow assert self.flow in ['source_to_target', 'target_to_source'] self.node_dim = node_dim self.inspector = Inspector(self) self.inspector.inspect(self.message) self.inspector.inspect(self.aggregate, pop_first=True) self.inspector.inspect(self.message_and_aggregate, pop_first=True) self.inspector.inspect(self.update, pop_first=True) self.__user_args__ = self.inspector.keys( ['message', 'aggregate', 'update']).difference(self.special_args) self.__fused_user_args__ = self.inspector.keys( ['message_and_aggregate', 'update']).difference(self.special_args) # Support for "fused" message passing. self.fuse = self.inspector.implements('message_and_aggregate') # Support for GNNExplainer. self.__explain__ = False self.__edge_mask__ = None
在初始化函数中,MessagePassing
定义了一个 Inspector
. Inspector 的中文意思是检查员的意思,这个类的作用就是检查各个函数的输入参数,并保存到 Inspector
的参数列表字典中 Inspector.params
中。
如果 message
的输入参数为 x_i, x_j
,那么Inspector.params['message']={'x_i': Parameter, 'x_j': Parameter}
(注:这里仅作示意,实际 Inspector.params['message']
类型为 OrderedDict
). Inspector.implements
检查函数是否实现.
MessagePasing
中最核心的是 propgate
函数,假设邻接矩阵 edge_index
的类型为 Torch.LongTensor
,消息由 edge_index[0]
传向 edge_index[1]
,代码实现如下
def propagate(self, edge_index: Adj, size: Size = None, **kwargs): # 为了简化问题,这里不讨论 edge_index 为 SparseTensor 的情况,感兴趣的可阅读 PyG 原始代码 size = self.__check_input__(edge_index, size) coll_dict = self.__collect__(self.__user_args__, edge_index, size, kwargs) msg_kwargs = self.inspector.distribute('message', coll_dict) out = self.message(**msg_kwargs) aggr_kwargs = self.inspector.distribute('aggregate', coll_dict) out = self.aggregate(out, **aggr_kwargs) update_kwargs = self.inspector.distribute('update', coll_dict) return self.update(out, **update_kwargs)
在这段代码中,首先是检查节点数量和用户自定义的输入变量,然后依次执行 message
, aggregate
和 update
函数。
如果是自定义图卷积,一般会重写 message
和 update
,这一点随后再以 GCN 为例解释,这里首先来看一下 aggregate
的实现
def aggregate(self, inputs: Tensor, index: Tensor, ptr: Optional[Tensor] = None, dim_size: Optional[int] = None) -> Tensor: if ptr is not None: ptr = expand_left(ptr, dim=self.node_dim, dims=inputs.dim()) return segment_csr(inputs, ptr, reduce=self.aggr) else: return scatter(inputs, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr)
ptr
变量是针对邻接矩阵 edge_index
为 SparseTensor
的情况,此处暂且不论
inputs
为 message
计算得到的消息, index
就是待更新节点的索引,实际上就是 edge_index_i
. 聚合计算通过 scatter
函数实现。scatter
具体实现参考链接
下面以 GCN 为例,我们来看一下 MessagePassing
的计算过程。
GCN 的计算公式如下
实际计算工程可以分为下面几步
- 1.在邻接矩阵中增加自循环,即把邻接矩阵的对角线上的元素设为1
- 2.对节点特征矩阵做线性变换
- 3.计算节点的归一化系数,也就是节点度乘积的开方
- 4.对节点特征做归一化处理
- 5.聚合(求和)节点特征得到新的节点嵌入
代码如下
import torch from torch_geometric.nn import MessagePassing from torch_geometric.utils import add_self_loops, degree class GCNConv(MessagePassing): def __init__(self, in_channels, out_channels): super(GCNConv, self).__init__(aggr='add') # "Add" aggregation (Step 5). self.lin = torch.nn.Linear(in_channels, out_channels) def forward(self, x, edge_index): # x has shape [N, in_channels] # edge_index has shape [2, E] # Step 1: Add self-loops to the adjacency matrix. edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) # Step 2: Linearly transform node feature matrix. x = self.lin(x) # Step 3: Compute normalization. row, col = edge_index deg = degree(col, x.size(0), dtype=x.dtype) deg_inv_sqrt = deg.pow(-0.5) deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 norm = deg_inv_sqrt[row] * deg_inv_sqrt[col] # Step 4-5: Start propagating messages. return self.propagate(edge_index, x=x, norm=norm) def message(self, x_j, norm): # x_j has shape [E, out_channels] # Step 4: Normalize node features. return norm.view(-1, 1) * x_j
在 forward
函数中,首先是给节点边增加自循环。设输入变量如下
edge_index = torch.tensor([[0, 0, 2], [1, 2, 3]], dtype=torch.long) x = torch.rand((4, 3)) conv = GCNConv(3, 8)
注意到默认消息传递方向为 source_to_target
,此时edge_index[0]=x_j
为 source, edge_index[1]=x_i
为 target.
在 GCN 中,第一步是增加节点的自循环,add_self_loops
计算前后变化如下
# before add_self_loops # edge_index= tensor([[0, 0, 2], [1, 2, 3]]) # after add_self_loops # edge_index= tensor([[0, 0, 2, 0, 1, 2, 3], [1, 2, 3, 0, 1, 2, 3]]) # norm= tensor([0.7071, 0.7071, 0.5000, 1.0000, 0.5000, 0.5000, 0.5000]
此处的 propagate
的输出参数由 edge_index, x, norm
, edge_index
是 propagete
必须输入的参数,x, norm
为用户自定义参数。
在 __collect__
会根据变量名称来收集 message
需要的输入参数。
在 GCN 中,norm
保持不变,x
将被映射到 x_j
,并且经过 __lift__
函数,其值也会发生变化。__lift__
函数如下
def __lift__(self, src, edge_index, dim): if isinstance(edge_index, Tensor): index = edge_index[dim] return src.index_select(self.node_dim, index)
在本例中,输入的特征 shape=[4, 8]
,经过 __lift__
后,节点特征 shape=[7, 8]
. 经过 message
计算后,就可以执行 aggregate
和 update
了。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
python实现比较类的两个instance(对象)是否相等的方法分析
这篇文章主要介绍了python实现比较类的两个instance(对象)是否相等的方法,结合实例形式分析了Python判断类的实例是否相等的判断操作实现技巧,需要的朋友可以参考下2019-06-06python目录操作之python遍历文件夹后将结果存储为xml
需求是获取服务器某个目录下的某些类型的文件,考虑到服务器即有Linux、又有Windows,所以写了一个Python小程序来完成这项工作,大家参考使用吧2014-01-01
最新评论