YOLOv5小目标切图检测的思路与方法

 更新时间:2022年12月20日 15:41:34   作者:Mr Dinosaur  
目标检测Yolo算法是非常经典且应用广泛的算法,下面这篇文章主要给大家介绍了关于YOLOv5小目标切图检测的思路与方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

前言

当我们在检测较大分辨率的图片时,对小目标的检测效果一直是较差的,所以就有了下面几种方法:

  • 将图片压缩成大尺寸进行训练( 想法:没显存,搞不来)
  • 添加小检测头(想法:P5模型还有点用,P6模型完全没用)
  • 添加一些检测模型和玄学机制(想法:你要是写论文就去看看知*吧,只需要在最后面加一句:已达到工业检测要求)
  • 切图检测(想法:比较耗时,过程也比较繁琐,可以尝试)

切图检测

思路:

  • 将原图切成你想要的数量
  • 将切成的小图进行训练,得到模型
  • 将你需要检测的图片切成小图,用模型检测,并得到每张图目标位置的信息,保存在对应图片的txt文件
  • 将所有txt文件融合,得到1个txt文件,并在原图上显示

一:切块

# -*- coding:utf-8 -*-
import os
import matplotlib.pyplot as plt
import cv2
import numpy as np
 
 
def divide_img(img_path, img_name, save_path):
    imgg = img_path + img_name
    img = cv2.imread(imgg)
    #   img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    h = img.shape[0]
    w = img.shape[1]
    n = int(np.floor(h * 1.0 / 1000)) + 1
    m = int(np.floor(w * 1.0 / 1000)) + 1
    print('h={},w={},n={},m={}'.format(h, w, n, m))
    dis_h = int(np.floor(h / n))
    dis_w = int(np.floor(w / m))
    num = 0
    for i in range(n):
        for j in range(m):
            num += 1
            print('i,j={}{}'.format(i, j))
            sub = img[dis_h * i:dis_h * (i + 1), dis_w * j:dis_w * (j + 1), :]
            cv2.imwrite(save_path + '{}_{}.bmp'.format(name, num), sub)
 
 
if __name__ == '__main__':
 
    img_path = r'G:\1/'
    save_path = r'G:\3/'
    img_list = os.listdir(img_path)
    for name in img_list:
        divide_img(img_path, name, save_path)

使用模型检测后得到:

二:融合txt文件

import os
from cv2 import cv2
 
# 保存所有图片的宽高
# todo: img_info={'name': [w_h, child_w_h, mix_row_w_h, mix_col_w_h]}
img_info = {}
all_info = {}
 
 
# 初始化img_info
def init(big_images_path, mix_percent, rows, cols):
    image_names = os.listdir(big_images_path)
    for img_name in image_names:
        big_path = big_images_path + '\\' + img_name
        # print(big_path)
        img = cv2.imread(big_path)
        size = img.shape[0:2]
        w = size[1]
        h = size[0]
        child_width = int(w) // cols
        child_height = int(h) // rows
 
        mix_row_width = int(child_width * mix_percent * 2)
        mix_row_height = child_height
 
        mix_col_width = child_width
        mix_col_height = int(child_height * mix_percent * 2)
        # 根据img保存w和h
        img_info[img_name.split('.')[0]] = [w, h, child_width, child_height, mix_row_width, mix_row_height,
                                            mix_col_width, mix_col_height]
 
 
# 读取所有检测出来的 小图片的label
def get_label_info(labels_path, mix_percent, rows, cols):
    labels = os.listdir(labels_path)
    for label in labels:
        # print(label)
        # todo: type: 0正常, 1row, 2col
        # 判断该label属于哪一张图片
        cur_label_belong = label.split('_')[0]
        cur_big_width = img_info[cur_label_belong][0]
        cur_big_height = img_info[cur_label_belong][1]
        # 融合区域距离边界的一小部分宽高
        cur_row_width_step = img_info[cur_label_belong][2] * (1 - mix_percent)
        cur_col_height_step = img_info[cur_label_belong][3] * (1 - mix_percent)
        # 文件名给予数据
        # child_type = []
        # child_num = []
        # label内容给予数据
        child_class_index = []
        child_x = []
        child_y = []
        child_width = []
        child_height = []
 
        type = -1
        num = -1
        class_index = -1
        x = 0.0
        y = 0.0
        width = 0.0
        height = 0.0
 
        # print(f'{label}')
        # 读取所有需要的数据
        f = open(labels_path + '\\' + label, 'r')
        lines = f.read()
        # print(lines)
        f.close()
        contents = lines.split('\n')[:-1]
        # print(contents)
        for content in contents:
            content = content.split(' ')
            # print(content)
            class_index = int(content[0])
            x = float(content[1])
            y = float(content[2])
            width = float(content[3])
            height = float(content[4])
            pass
            # print(class_index, x, y, width, height)
            assert class_index != -1 or x != -1.0 or y != -1.0 or width != -1.0 or height != -1.0, \
                f'class_index:{class_index}, x:{x}, y:{y}, width:{width}, height:{height}'
            # 转换成 数据 坐标, 并根据不同的num进行处理
            num = label.split('_')[-1].split('.')[0]  # 图片尾号 命名: xxxx_x.jpg  xxxx_mix_row_xx.jpg xxxx_mix_col_xx.jpg
            cur_img_width = 0
            cur_img_height = 0
            distance_x = 0
            distance_y = 0
            small_image_width = img_info[cur_label_belong][2]
            small_image_height = img_info[cur_label_belong][3]
            if label.find('mix_row') != -1:
                # type = 1.
                distance_x = int(num) % (cols-1)
                distance_y = int(num) // (rows-1)
                cur_img_width = img_info[cur_label_belong][4]
                cur_img_height = img_info[cur_label_belong][5]
                # row x 加上step
                x = x * cur_img_width + cur_row_width_step + distance_x * small_image_width
                y = y * cur_img_height + distance_y * cur_img_height
            elif label.find('mix_col') != -1:
                # type = 2
                distance_x = int(num) % cols
                distance_y = int(num) // rows
                cur_img_width = img_info[cur_label_belong][6]
                cur_img_height = img_info[cur_label_belong][7]
                # col y 加上step
                print(f'x:{x}, y:{y}, cur_img_width:{cur_img_width}, cur_img_height:{cur_img_height}')
                x = x * cur_img_width + distance_x * cur_img_width
                y = y * cur_img_height + cur_col_height_step + distance_y * small_image_height
                print(f'x:{x}, y:{y}, height:{cur_col_height_step}')
            else:
                # type = 0
                distance_x = int(num) % cols
                distance_y = int(num) // rows
                cur_img_width = img_info[cur_label_belong][2]
                cur_img_height = img_info[cur_label_belong][3]
                # 小图片内, 无需加上 step
                x = x * cur_img_width + distance_x * cur_img_width
                y = y * cur_img_height + distance_y * cur_img_height
            assert cur_img_width != 0 or cur_img_height != 0 or distance_x != 0 or distance_y != 0, \
                f'cur_img_width:{cur_img_width}, cur_img_height:{cur_img_height}, distance_x:{distance_x}, distance_y:{distance_y}'
            assert x < cur_big_width and y < cur_big_height, f'{label}, {content}\nw:{cur_big_width}, h:{cur_big_height}, x:{x}, y:{y}'
            width = width * cur_img_width
            height = height * cur_img_height
            assert x != 0.0 or y != 0.0 or width != 0.0 or height != 0.0, f'x:{x}, y:{y}, width:{width}, height:{height}'
            # child_type.append(type)
            # child_num.append(num)
            child_class_index.append(class_index)
            child_x.append(x)
            child_y.append(y)
            child_width.append(width)
            child_height.append(height)
        # todo: 所有信息 根据 cur_label_belong 存储在all_info中
        for index, x, y, width, height in zip(child_class_index, child_x, child_y, child_width, child_height):
            if cur_label_belong not in all_info:
                all_info[cur_label_belong] = [[index, x, y, width, height]]
            else:
                all_info[cur_label_belong].append([index, x, y, width, height])
        child_class_index.clear()
        child_x.clear()
        child_y.clear()
        child_width.clear()
        child_height.clear()
 
 
# print((all_info['0342']))
# todo: 转成 yolo 格式, 保存
def save_yolo_label(yolo_labels_path):
    for key in all_info:
        # img_path = r'G:\Unity\code_project\other_project\data\joint\big_images' + '\\' + key + '.JPG'
        # img = cv2.imread(img_path)
        yolo_label_path = yolo_labels_path + '\\' + key + '.txt'
        cur_big_width = img_info[key][0]
        cur_big_height = img_info[key][1]
        content = ''
        i = 0
        for index, x, y, width, height in all_info[key]:
            # print(all_info[key][i])
            x = x / cur_big_width
            y = y / cur_big_height
            width = width / cur_big_width
            height = height / cur_big_height
            assert x < 1.0 and y < 1.0 and width < 1.0 and height < 1.0, f'{key} {i}\n{all_info[key][i]}\nx:{x}, y:{y}, width:{width}, height:{height}'
            content += f'{index} {x} {y} {width} {height}\n'
            i += 1
        with open(yolo_label_path, 'w') as f:
            f.write(content)
 
 
def joint_main(big_images_path=r'G:\3',
               labels_path=r'G:\5',
               yolo_labels_path=r'G:\6',
               mix_percent=0.2,
               rows=4,
               cols=4):
    print(f'融合图片, 原图片路径:{big_images_path}\n小图检测的txt结果路径:{labels_path}\n数据融合后txt结果路径:{yolo_labels_path}')
    init(big_images_path, mix_percent, rows, cols)
    get_label_info(labels_path, mix_percent, rows, cols)
    save_yolo_label(yolo_labels_path)
 
joint_main()

三:原图显示

# -*- coding: utf-8 -*-
import os
from PIL import Image
from PIL import ImageDraw, ImageFont
from cv2 import cv2
 
 
def draw_images(images_dir, txt_dir, box_dir, font_type_path):
    font = ImageFont.truetype(font_type_path, 50)
    if not os.path.exists(box_dir):
        os.makedirs(box_dir)
    # num = 0
 
    # 设置颜色
    all_colors = ['red', 'green', 'yellow', 'blue', 'pink', 'black', 'skyblue', 'brown', 'orange', 'purple', 'gray',
                  'lightpink', 'gold', 'brown', 'black']
    colors = {}
 
    for file in os.listdir(txt_dir):
        print(file)
        image = os.path.splitext(file)[0].replace('xml', 'bmp') + '.bmp'
        # 转换成cv2读取,防止图片载入错误
        img = cv2.imread(images_dir + '/' + image)
        TURN = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = Image.fromarray(TURN)
        # img.show()
 
        if img.mode == "P":
            img = img.convert('RGB')
 
        w, h = img.size
        tag_path = txt_dir + '/' + file
        with open(tag_path) as f:
            for line in f:
                line_parts = line.split(' ')
                # 根据不同的 label 保存颜色
                if line_parts[0] not in colors.keys():
                    colors[line_parts[0]] = all_colors[len(colors.keys())]
                color = colors[line_parts[0]]
 
                draw = ImageDraw.Draw(img)
                x = (float(line_parts[1]) - 0.5 * float(line_parts[3])) * w
                y = (float(line_parts[2]) - 0.5 * float(line_parts[4])) * h
                xx = (float(line_parts[1]) + 0.5 * float(line_parts[3])) * w
                yy = (float(line_parts[2]) + 0.5 * float(line_parts[4])) * h
                draw.rectangle([x - 10, y - 10, xx, yy], fill=None, outline=color, width=5)
                # num += 1
            del draw
            img.save(box_dir + '/' + image)
        # print(file, num)
    # print(colors)
 
 
def draw_main(box_dir=r'G:\5',
              txt_dir=r'G:\6',
              image_source_dir=r'G:\3'):
    font_type_path = 'C:/Windows/Fonts/simsun.ttc'
    print(f'标注框, 数据来源: {txt_dir}\n 被标注图片: {image_source_dir}\n 结果保存路径: {box_dir}')
    draw_images(image_source_dir, txt_dir, box_dir, font_type_path)
 
 
draw_main()

效果对比:(上YOLOv5检测,下YOLOv5+切图检测)

参考:

https://blog.csdn.net/qq_43622870/article/details/124984295

总结

到此这篇关于YOLOv5小目标切图检测的思路与方法的文章就介绍到这了,更多相关YOLOv5小目标切图检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python接口自动化之cookie、session应用详解

    Python接口自动化之cookie、session应用详解

    本文主要介绍cookie、session原理及在自动化过程中如何利用cookie、session保持会话状态的应用,有需要的朋友可以参考下,希望可以有所帮助
    2021-08-08
  • 在Python中使用gRPC的方法示例

    在Python中使用gRPC的方法示例

    这篇文章主要介绍了在Python中使用gRPC的方法示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-08-08
  • python Event事件、进程池与线程池、协程解析

    python Event事件、进程池与线程池、协程解析

    这篇文章主要介绍了python Event事件、进程池与线程池、协程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • 10款最佳Python开发工具推荐,每一款都是神器

    10款最佳Python开发工具推荐,每一款都是神器

    这篇文章主要介绍了10款最佳Python开发工具推荐,每一款都是神器,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2020-10-10
  • pywinauto自动化操作记事本

    pywinauto自动化操作记事本

    这篇文章主要为大家详细介绍了pywinauto自动化操作记事本,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-08-08
  • Python中的并发编程asyncio库入门使用

    Python中的并发编程asyncio库入门使用

    这篇文章主要为大家介绍了Python中的并发编程asyncio库入门的使用示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-05-05
  • Python统计文本词汇出现次数的实例代码

    Python统计文本词汇出现次数的实例代码

    这篇文章主要介绍了Python统计文本词汇出现次数,这种问题在统计文本词汇的次数时经常会遇到,今天给大家分享解决方案,通过实例代码给大家讲解,需要的朋友可以参考下
    2020-02-02
  • python操作yaml说明

    python操作yaml说明

    这篇文章主要介绍了python操作yaml说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • 解决Python 使用h5py加载文件,看不到keys()的问题

    解决Python 使用h5py加载文件,看不到keys()的问题

    今天小编就为大家分享一篇解决Python 使用h5py加载文件,看不到keys()的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • python+Tkinter+多线程的实例

    python+Tkinter+多线程的实例

    这篇文章主要介绍了python+Tkinter+多线程的实例,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-05-05

最新评论