Python中的lambda和apply用法及说明
1 lambda
lambda原型为:lambda 参数:操作(参数)
lambda函数也叫匿名函数,即没有具体名称的函数,它允许快速定义单行函数,可以用在任何需要函数的地方。这区别于def定义的函数。
lambda与def的区别:
1)def创建的方法是有名称的,而lambda没有。
2)lambda会返回一个函数对象,但这个对象不会赋给一个标识符,而def则会把函数对象赋值给一个变量(函数名)。
3)lambda只是一个表达式,而def则是一个语句。
4)lambda表达式” : “后面,只能有一个表达式,def则可以有多个。
5)像if或for或print等语句不能用于lambda中,def可以。
6)lambda一般用来定义简单的函数,而def可以定义复杂的函数。
1.1 举最简单的例子
#单个参数的: g = lambda x : x ** 2 print g(3) """ 9 """ #多个参数的: g = lambda x, y, z : (x + y) ** z print g(1,2,2) """ 9 """
1.2 再举一个普通的例子
将一个 list 里的每个元素都平方:
map( lambda x: x*x, [y for y in range(10)] )
这个写法要好过
def sq(x): return x * x map(sq, [y for y in range(10)])
因为后者多定义了一个(污染环境的)函数,尤其如果这个函数只会使用一次的话。
进一步讲,匿名函数本质上就是一个函数,它所抽象出来的东西是一组运算。这是什么意思呢?类比
a = [1, 2, 3]
和
f = lambda x : x + 1
我们会发现,等号右边的东西完全可以脱离等号左边的东西而存在,等号左边的名字只是右边之实体的标识符。如果能习惯 [1, 2, 3] 单独存在,那么 lambda x : x + 1 也能单独存在其实也就不难理解了,它的意义就是给「某个数加一」这一运算本身。
现在回头来看 map() 函数,它可以将一个函数映射到一个可枚举类型上面。沿用上面给出的 a 和 f,可以写
map(f, a)
也就是将函数 f 依次套用在 a 的每一个元素上面,获得结果 [2, 3, 4]。现在用 lambda 表达式来替换 f,就变成:
map( lambda x : x + 1, [1, 2, 3] )
会不会觉得现在很一目了然了?尤其是类比
a = [1, 2, 3] r = [] for each in a: r.append(each+1)
2 Apply
Python中apply函数的格式为:apply(func,*args,**kwargs)
当然,func可以是匿名函数。
用途:当一个函数的参数存在于一个元组或者一个字典中时,用来间接的调用这个函数,并将元组或者字典中的参数按照顺序传递给参数
解析:args是一个包含按照函数所需参数传递的位置参数的一个元组,简单来说,假如A函数的函数位置为 A(a=1,b=2),那么这个元组中就必须严格按照这个参数的位置顺序进行传递(a=3,b=4),而不能是(b=4,a=3)这样的顺序。kwargs是一个包含关键字参数的字典,而其中args如果不传递,kwargs需要传递,则必须在args的位置留空。
apply的返回值就是函数func函数的返回值。
2.1 举例
def function(a,b): print(a,b) apply(function,('good','better')) apply(function,(2,3+6)) apply(function,('cai','quan')) apply(function,('cai',),{'b':'caiquan'}) apply(function,(),{'a':'caiquan','b':'Tom'})
输出结果:
('good', 'better')
(2, 9)
('cai', 'quan')
('cai', 'caiquan')
('caiquan', 'Tom')
有时候,函数的参数可能是DataFrame中的行或者列。
2.2 下面的例子是DataFrame中apply的用法
#函数应用和映射 import numpy as np import pandas as pd df=pd.DataFrame(np.random.randn(4,3),columns=list('bde'),index=['utah','ohio','texas','oregon']) print(df) """ b d e utah -0.667969 1.974801 0.738890 ohio -0.896774 -0.790914 0.474183 texas 0.043476 0.890176 -0.662676 oregon 0.701109 -2.238288 -0.154442 """ #将函数应用到由各列或行形成的一维数组上。DataFrame的apply方法可以实现此功能 f=lambda x:x.max()-x.min() #默认情况下会以列为单位,分别对列应用函数 t1=df.apply(f) print(t1) t2=df.apply(f,axis=1) print(t2) """ b 1.597883 d 4.213089 e 1.401566 dtype: float64 utah 2.642770 ohio 1.370957 texas 1.552852 oregon 2.939397 dtype: float64 """ #除标量外,传递给apply的函数还可以返回由多个值组成的Series def f(x): return pd.Series([x.min(),x.max()],index=['min','max']) t3=df.apply(f) #从运行的结果可以看出,按列调用的顺序,调用函数运行的结果在右边依次追加 print(t3) """ b d e min -0.896774 -2.238288 -0.662676 max 0.701109 1.974801 0.738890 """ #元素级的python函数,将函数应用到每一个元素 #将DataFrame中的各个浮点值保留两位小数 f=lambda x: '%.2f'%x t3=df.applymap(f) print(t3) """ b d e utah -0.67 1.97 0.74 ohio -0.90 -0.79 0.47 texas 0.04 0.89 -0.66 oregon 0.70 -2.24 -0.15 """ #注意,之所以这里用map,是因为Series有一个元素级函数的map方法。而dataframe只有applymap。 t4=df['e'].map(f) print(t4) """ utah 0.74 ohio 0.47 texas -0.66 oregon -0.15 """
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
最新评论