手把手教你YOLOv5如何进行区域目标检测

 更新时间:2022年12月22日 11:46:02   作者:wiz_k  
YOLOV5和YOLOV4有很多相同的地方,最大的改变还是基础架构的变化,下面这篇文章主要给大家介绍了关于YOLOv5如何进行区域目标检测的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下

提示:本项目的源码是基于yolov5 6.0版本修改

效果展示

在使用YOLOv5的有些时候,我们会遇到一些具体的目标检测要求,比如要求不检测全图,只在规定的区域内才检测。所以为了满足这个需求,可以用一个mask覆盖掉不想检测的区域,使得YOLOv5在检测的时候,该覆盖区域就不纳入检测范围。

话不多说,直接上检测效果,可以很直观的看到目标在进入规定的检测区域才得到检测。

一、确定检测范围

快捷查询方法:

  • 用windows自带画图打开图片
  • 鼠标移到想要框选检测区域的四个顶点,查询点的像素坐标
  • 分别计算点的像素坐标与图片总像素坐标的比例(后面要用)

查询方法如下图所示:

提示:以下是计算的举例说明,仅供参考

例如:图中所标注的点(1010,174)代表(x,y)坐标

hl1 = 174 / 768 (可约分)监测区域纵坐标距离图片***顶部*** 比例

wl1 = 1010 / 1614 (可约分)监测区域横坐标距离图片***左部*** 比例

这里只举例了一个点,如检测范围是四边形,需要计算左上,右上,右下,左下四个顶点。

二、detect.py代码修改

1.确定区域检测范围

在下面代码位置填上计算好的比例:

 # mask for certain region
        #1,2,3,4 分别对应左上,右上,右下,左下四个点
        hl1 = 1.4 / 10 #监测区域高度距离图片顶部比例
        wl1 = 6.4 / 10 #监测区域高度距离图片左部比例
        hl2 = 1.4 / 10  # 监测区域高度距离图片顶部比例
        wl2 = 6.8 / 10  # 监测区域高度距离图片左部比例
        hl3 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl3 = 7.6 / 10  # 监测区域高度距离图片左部比例
        hl4 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl4 = 5.5 / 10  # 监测区域高度距离图片左部比例

在135行:for path, img, im0s, vid_cap in dataset: 下插入代码:

        # mask for certain region
        #1,2,3,4 分别对应左上,右上,右下,左下四个点
        hl1 = 1.6 / 10 #监测区域高度距离图片顶部比例
        wl1 = 6.4 / 10 #监测区域高度距离图片左部比例
        hl2 = 1.6 / 10  # 监测区域高度距离图片顶部比例
        wl2 = 6.8 / 10  # 监测区域高度距离图片左部比例
        hl3 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl3 = 7.6 / 10  # 监测区域高度距离图片左部比例
        hl4 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl4 = 5.5 / 10  # 监测区域高度距离图片左部比例
        if webcam:
            for b in range(0,img.shape[0]):
                mask = np.zeros([img[b].shape[1], img[b].shape[2]], dtype=np.uint8)
                #mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255
                pts = np.array([[int(img[b].shape[2] * wl1), int(img[b].shape[1] * hl1)],  # pts1
                                [int(img[b].shape[2] * wl2), int(img[b].shape[1] * hl2)],  # pts2
                                [int(img[b].shape[2] * wl3), int(img[b].shape[1] * hl3)],  # pts3
                                [int(img[b].shape[2] * wl4), int(img[b].shape[1] * hl4)]], np.int32)
                mask = cv2.fillPoly(mask,[pts],(255,255,255))
                imgc = img[b].transpose((1, 2, 0))
                imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)
                #cv2.imshow('1',imgc)
                img[b] = imgc.transpose((2, 0, 1))

        else:
            mask = np.zeros([img.shape[1], img.shape[2]], dtype=np.uint8)
            #mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255
            pts = np.array([[int(img.shape[2] * wl1), int(img.shape[1] * hl1)],  # pts1
                            [int(img.shape[2] * wl2), int(img.shape[1] * hl2)],  # pts2
                            [int(img.shape[2] * wl3), int(img.shape[1] * hl3)],  # pts3
                            [int(img.shape[2] * wl4), int(img.shape[1] * hl4)]], np.int32)
            mask = cv2.fillPoly(mask, [pts], (255,255,255))
            img = img.transpose((1, 2, 0))
            img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)
            img = img.transpose((2, 0, 1))

2.画检测区域线(若不想像效果图一样显示出检测区域可不添加)

在196行: p, s, im0, frame = path, ‘’, im0s.copy(), getattr(dataset, ‘frame’, 0) 后添加

            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)

                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)
                # plot_one_box(dr, im0, label='Detection_Region', color=(0, 255, 0), line_thickness=2)
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)
                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)

                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

总结

基于yolov5的区域目标检测实质上就是在图片选定检测区域做一个遮掩mask,检测区域不一定为四边形,也可是其他形状。该方法可检测图片/视频/摄像头。

提示:使用该方法要先确定数据集图像是否像监控图像一样,画面主体保持不变

原理展现如图所示:(图片参考http://t.csdn.cn/lgyO1

整体detect.py修改代码

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.

Usage:
    $ python path/to/detect.py --source path/to/img.jpg --weights yolov5s.pt --img 640
"""

import argparse
import os
import sys
from pathlib import Path

import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.experimental import attempt_load
from utils.datasets import LoadImages, LoadStreams
from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, \
    increment_path, non_max_suppression, print_args, save_one_box, scale_coords, set_logging, \
    strip_optimizer, xyxy2xywh
from utils.plots import Annotator, colors
from utils.torch_utils import load_classifier, select_device, time_sync


@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        imgsz=640,  # inference size (pixels)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        ):
    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    w = str(weights[0] if isinstance(weights, list) else weights)
    classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', '']
    check_suffix(w, suffixes)  # check weights have acceptable suffix
    pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes)  # backend booleans
    stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
    if pt:
        model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device)
        stride = int(model.stride.max())  # model stride
        names = model.module.names if hasattr(model, 'module') else model.names  # get class names
        if half:
            model.half()  # to FP16
        if classify:  # second-stage classifier
            modelc = load_classifier(name='resnet50', n=2)  # initialize
            modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
    elif onnx:
        if dnn:
            # check_requirements(('opencv-python>=4.5.4',))
            net = cv2.dnn.readNetFromONNX(w)
        else:
            check_requirements(('onnx', 'onnxruntime'))
            import onnxruntime
            session = onnxruntime.InferenceSession(w, None)
    else:  # TensorFlow models
        check_requirements(('tensorflow>=2.4.1',))
        import tensorflow as tf
        if pb:  # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
            def wrap_frozen_graph(gd, inputs, outputs):
                x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped import
                return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs),
                               tf.nest.map_structure(x.graph.as_graph_element, outputs))

            graph_def = tf.Graph().as_graph_def()
            graph_def.ParseFromString(open(w, 'rb').read())
            frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0")
        elif saved_model:
            model = tf.keras.models.load_model(w)
        elif tflite:
            interpreter = tf.lite.Interpreter(model_path=w)  # load TFLite model
            interpreter.allocate_tensors()  # allocate
            input_details = interpreter.get_input_details()  # inputs
            output_details = interpreter.get_output_details()  # outputs
            int8 = input_details[0]['dtype'] == np.uint8  # is TFLite quantized uint8 model
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    if pt and device.type != 'cpu':
        model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters())))  # run once
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, img, im0s, vid_cap in dataset:
        # mask for certain region
        #1,2,3,4 分别对应左上,右上,右下,左下四个点
        hl1 = 1.6 / 10 #监测区域高度距离图片顶部比例
        wl1 = 6.4 / 10 #监测区域高度距离图片左部比例
        hl2 = 1.6 / 10  # 监测区域高度距离图片顶部比例
        wl2 = 6.8 / 10  # 监测区域高度距离图片左部比例
        hl3 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl3 = 7.6 / 10  # 监测区域高度距离图片左部比例
        hl4 = 4.5 / 10  # 监测区域高度距离图片顶部比例
        wl4 = 5.5 / 10  # 监测区域高度距离图片左部比例
        if webcam:
            for b in range(0,img.shape[0]):
                mask = np.zeros([img[b].shape[1], img[b].shape[2]], dtype=np.uint8)
                #mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255
                pts = np.array([[int(img[b].shape[2] * wl1), int(img[b].shape[1] * hl1)],  # pts1
                                [int(img[b].shape[2] * wl2), int(img[b].shape[1] * hl2)],  # pts2
                                [int(img[b].shape[2] * wl3), int(img[b].shape[1] * hl3)],  # pts3
                                [int(img[b].shape[2] * wl4), int(img[b].shape[1] * hl4)]], np.int32)
                mask = cv2.fillPoly(mask,[pts],(255,255,255))
                imgc = img[b].transpose((1, 2, 0))
                imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)
                #cv2.imshow('1',imgc)
                img[b] = imgc.transpose((2, 0, 1))

        else:
            mask = np.zeros([img.shape[1], img.shape[2]], dtype=np.uint8)
            #mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255
            pts = np.array([[int(img.shape[2] * wl1), int(img.shape[1] * hl1)],  # pts1
                            [int(img.shape[2] * wl2), int(img.shape[1] * hl2)],  # pts2
                            [int(img.shape[2] * wl3), int(img.shape[1] * hl3)],  # pts3
                            [int(img.shape[2] * wl4), int(img.shape[1] * hl4)]], np.int32)
            mask = cv2.fillPoly(mask, [pts], (255,255,255))
            img = img.transpose((1, 2, 0))
            img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)
            img = img.transpose((2, 0, 1))

        t1 = time_sync()
        if onnx:
            img = img.astype('float32')
        else:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
        img = img / 255.0  # 0 - 255 to 0.0 - 1.0
        if len(img.shape) == 3:
            img = img[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        if pt:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(img, augment=augment, visualize=visualize)[0]
        elif onnx:
            if dnn:
                net.setInput(img)
                pred = torch.tensor(net.forward())
            else:
                pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))
        else:  # tensorflow model (tflite, pb, saved_model)
            imn = img.permute(0, 2, 3, 1).cpu().numpy()  # image in numpy
            if pb:
                pred = frozen_func(x=tf.constant(imn)).numpy()
            elif saved_model:
                pred = model(imn, training=False).numpy()
            elif tflite:
                if int8:
                    scale, zero_point = input_details[0]['quantization']
                    imn = (imn / scale + zero_point).astype(np.uint8)  # de-scale
                interpreter.set_tensor(input_details[0]['index'], imn)
                interpreter.invoke()
                pred = interpreter.get_tensor(output_details[0]['index'])
                if int8:
                    scale, zero_point = output_details[0]['quantization']
                    pred = (pred.astype(np.float32) - zero_point) * scale  # re-scale
            pred[..., 0] *= imgsz[1]  # x
            pred[..., 1] *= imgsz[0]  # y
            pred[..., 2] *= imgsz[1]  # w
            pred[..., 3] *= imgsz[0]  # h
            pred = torch.tensor(pred)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            # if webcam:  # batch_size >= 1
            #     p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
            # else:
            #     p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)

                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)
                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)
                # plot_one_box(dr, im0, label='Detection_Region', color=(0, 255, 0), line_thickness=2)
            else:
                p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)
                cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),
                            cv2.FONT_HERSHEY_SIMPLEX,
                            1.0, (255, 255, 0), 2, cv2.LINE_AA)
                pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1
                                [int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2
                                [int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3
                                [int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4
                # pts = pts.reshape((-1, 1, 2))
                zeros = np.zeros((im0.shape), dtype=np.uint8)
                mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))
                im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)

                cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Print time (inference-only)
            print(f'{s}Done. ({t3 - t2:.3f}s)')

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / '权重文件', help='model path(s)')
    parser.add_argument('--source', type=str, default=ROOT / '检测图片', help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=1, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=True, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(FILE.stem, opt)
    return opt

def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))

if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

总结

到此这篇关于YOLOv5如何进行区域目标检测的文章就介绍到这了,更多相关YOLOv5区域目标检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python异步编程之asyncio高阶API的使用详解

    python异步编程之asyncio高阶API的使用详解

    asyncio中函数可以分为高阶函数和低阶函数,通常开发中使用更多的是高阶函数,本文主要为大家介绍了asyncio中常用的高阶函数,需要的可以参考下
    2024-01-01
  • python os库使用示例教程

    python os库使用示例教程

    这篇文章主要介绍了python os库使用示例教程,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧
    2024-07-07
  • Python如何进行时间处理

    Python如何进行时间处理

    这篇文章主要介绍了Python如何进行时间处理,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-08-08
  • python中的opencv 图像分割与提取

    python中的opencv 图像分割与提取

    这篇文章主要介绍了python中的opencv 图像分割与提取,图像中将前景对象作为目标图像分割或者提取出来。对背景本身并无兴趣分水岭算法及GrabCut算法对图像进行分割及提取。具体实现过程需要的朋友可以参考下面文章详细介绍
    2022-06-06
  • 用 Python 连接 MySQL 的几种方式详解

    用 Python 连接 MySQL 的几种方式详解

    这篇文章主要介绍了用 Python 连接 MySQL 的几种方式,大家可以根据实际情况选择合理的连接方式,需要的朋友可以参考下
    2018-04-04
  • linux之文件查找指定文件中包含关键字的行信息方式

    linux之文件查找指定文件中包含关键字的行信息方式

    这篇文章主要介绍了linux之文件查找指定文件中包含关键字的行信息方式,具有很好的参考价值,希望对大家有所帮助。
    2023-06-06
  • python求定积分之quad函数详解

    python求定积分之quad函数详解

    这篇文章主要介绍了python求定积分之quad函数详解,SciPy下实现求函数的积分的函数的基本使用,积分,高等数学里有大量的讲述,基本意思就是求曲线下面积之和,需要的朋友可以参考下
    2023-08-08
  • 详解python中asyncio模块

    详解python中asyncio模块

    本篇文章给大家详细分析了python中重要的asyncio模块相关知识点,有兴趣的朋友可以学习参考下。
    2018-03-03
  • Python中的各个多线程模块之间的区别解析

    Python中的各个多线程模块之间的区别解析

    Python中涉及多线程的主要模块包括threading、thread和concurrent.futures,现代Python编程推荐使用threading和concurrent.futures,以提供更高层次的抽象和可用性,感兴趣的朋友跟随小编一起看看吧
    2024-09-09
  • ubuntu安装jupyter并设置远程访问的实现

    ubuntu安装jupyter并设置远程访问的实现

    Jupyter Notebook是Ipython的升级版,而Ipython可以说是一个加强版的交互式Shell,本文主要介绍了ubuntu安装jupyter并设置远程访问的实现,感兴趣的可以了解一下
    2022-03-03

最新评论