python根据json数据画疫情分布地图的详细代码

 更新时间:2022年12月27日 11:33:54   作者:阳862  
这篇文章主要介绍了python根据json数据画疫情分布地图的详细代码,掌握使用pyecharts构建基础的全国地图可视化图表,本文结合示例代码给大家介绍的非常详细,需要的朋友可以参考下

注:数据集在文章最后

一.基础地图使用

1.掌握使用pyecharts构建基础的全国地图可视化图表

演示

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
map=Map()
data=[
    ("北京",99),
    ("上海",199),
    ("湖南",299),
    ("台湾",199),
    ("安徽",299),
    ("广州",399),
    ("湖北",599)
]
map.add("地图",data,"china")
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True
 
    )
)
map.render("1.html")

结果是

这里有个问题

 is_show=True表示展示图例,但是不准怎么办?
这就需要手动校准范围

from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
map=Map()
data=[
    ("北京",99),
    ("上海",199),
    ("湖南",299),
    ("台湾",199),
    ("安徽",299),
    ("广州",399),
    ("湖北",599)
]
map.add("地图",data,"china")
map.set_global_opts(
    visualmap_opts=VisualMapOpts(
        is_show=True,
        is_piecewise=True,
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000以上", "color": "#990033"},
 
        ]
 
    )
)
map.render("1.html")

结果是

 这样就可以了

再解释一下颜色的设置

这样就可以查询相应的颜色

二.疫情地图——国内疫情地图

1.案例效果

演示

 利用json在线在线解析工具可以看到

 那么我们就可以知道该怎么去提取

#从字典中取出省份数据
province_data_list=data_dict["areaTree"][0]["children"]

代码

import json
from pyecharts.charts import Map
from pyecharts.options import *
#读取文件
f=open("D:/疫情.txt","r",encoding="utf-8")
data=f.read()
#关闭文件
f.close()
#获取各省数据
#将字符串json转化为python的字典
data_dict=json.loads(data)
#从字典中取出省份数据
province_data_list=data_dict["areaTree"][0]["children"]
#组装每个省份和确诊人数为元组,并各个省的数据都封装如列表
data_list=[]#绘图需要用到数据列表
for province_data in province_data_list:
    province_name=province_data["name"]#省份名称
    province_confirm=province_data["total"]["confirm"]#确诊人数
    data_list.append((province_name,province_confirm))#这里注意列表里面嵌套的是元组
print(f"{type(data_list)}\n{data_list}")
 
#创建地图对象
map=Map()
#添加数据
map.add("各省份确诊人数",data_list,"china")
#设置全局配置,定制分段到1视觉映射
map.set_global_opts(
    title_opts=TitleOpts("全国疫情地图",pos_left="center",pos_bottom="1%"),
    visualmap_opts=VisualMapOpts(
        is_show=True,#是否显示
        is_piecewise=True,#是否分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000以上", "color": "#990033"},
 
        ]
 
    )
)
map.render("全国疫情地图.html")

结果是

三.疫情地图——省级疫情地图

以河南省为例

代码

import json
from pyecharts.charts import Map
from pyecharts.options import *
 
f=open("D:/疫情.txt","r",encoding="utf-8")
data=f.read()
#关闭文件
f.close()
#json数据转化为python字典
data_dict=json.loads(data)
#取到河南省数据
cities_data=data_dict["areaTree"][0]["children"][3]["children"]
#准备数据为元组并放入list
data_list=[]
 
for city_data in cities_data:
    city_name=city_data["name"]+"市"
    city_confirm=city_data["total"]["confirm"]
    data_list.append((city_name,city_confirm))
#构建地图
map=Map()
map.add("河南省疫情分布",data_list,"河南")
#设置全局选项
map.set_global_opts(
    title_opts=TitleOpts(title="河南疫情地图"),
    visualmap_opts=VisualMapOpts(
        is_show=True,#是否显示
        is_piecewise=True,#是否分段
        pieces=[
            {"min": 1, "max": 9, "label": "1-9人", "color": "#CCFFFF"},
            {"min": 10, "max": 99, "label": "10-99人", "color": "#FFFF99"},
            {"min": 100, "max": 499, "label": "100-499人", "color": "#FF9966"},
            {"min": 500, "max": 999, "label": "500-999人", "color": "#FF6666"},
            {"min": 1000, "max": 9999, "label": "1000-9999人", "color": "#CC3333"},
            {"min": 10000, "label": "10000以上", "color": "#990033"},
 
        ]
    )
)
map.render("河南疫情地图.html")

结果是

有个问题:济源市因为数据集中没有相应数据,所以需要我们手动加上去

这样就可以了

结果是

 四.数据集

链接: https://pan.baidu.com/s/10eqeAEPjZC9PohlSnMOkJg?pwd=sjte 

提取码: sjte 

到此这篇关于python根据json数据画疫情分布地图的详细代码的文章就介绍到这了,更多相关python画疫情分布地图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • PyCharm中的terminal运行从PS修改成cmd方式

    PyCharm中的terminal运行从PS修改成cmd方式

    这篇文章主要介绍了PyCharm中的terminal运行从PS修改成cmd方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • Python压缩解压缩zip文件及破解zip文件密码的方法

    Python压缩解压缩zip文件及破解zip文件密码的方法

    这篇文章主要介绍了Python压缩解压缩zip文件及尝试破解zip文件密码的方法,给出了一个使用zipfile模块的简单示例,需要的朋友可以参考下
    2015-11-11
  • python-opencv如何读取图片及尺寸修改

    python-opencv如何读取图片及尺寸修改

    这篇文章主要介绍了python-opencv如何读取图片及尺寸修改,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • 图解Python中浅拷贝copy()和深拷贝deepcopy()的区别

    图解Python中浅拷贝copy()和深拷贝deepcopy()的区别

    这篇文章主要介绍了Python中浅拷贝copy()和深拷贝deepcopy()的区别,浅拷贝和深拷贝想必大家在学习中遇到很多次,这也是面试中常常被问到的问题,本文就带你详细了解一下
    2023-05-05
  • Python3中lambda表达式与函数式编程讲解

    Python3中lambda表达式与函数式编程讲解

    今天小编就为大家分享一篇关于Python3中lambda表达式与函数式编程讲解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-01-01
  • Jupyter notebook命令和编辑模式常用快捷键汇总

    Jupyter notebook命令和编辑模式常用快捷键汇总

    这篇文章主要介绍了Jupyter notebook命令和编辑模式常用快捷键汇总,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11
  • Python Unittest自动化单元测试框架详解

    Python Unittest自动化单元测试框架详解

    这篇文章主要为大家详细介绍了Python Unittest自动化单元测试框架的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • Python打印九九乘法表的5种方式代码示例

    Python打印九九乘法表的5种方式代码示例

    在Python中打印99乘法表的方法有很多种,比如for-for、while-while、while-for等,这篇文章主要给大家介绍了关于Python打印九九乘法表的5种方式,文中通过代码介绍的非常详细,需要的朋友可以参考下
    2024-04-04
  • Pyqt5自适应布局实例

    Pyqt5自适应布局实例

    今天小编就为大家分享一篇Pyqt5自适应布局实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python实现判断一行代码是否为注释的方法

    Python实现判断一行代码是否为注释的方法

    今天小编就为大家分享一篇Python实现判断一行代码是否为注释的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05

最新评论