pytorch实现好莱坞明星识别的示例代码

 更新时间:2023年01月03日 09:19:32   作者:老师我作业忘带了  
本文主要介绍了pytorch实现好莱坞明星识别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

一、前期准备

1.设置GPU

import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets,models
import matplotlib.pyplot as plt
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

2.导入数据

data_dir = './hlw/'
data_dir = pathlib.Path(data_dir)
 
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[1] for path in data_paths]
classNames
['Angelina Jolie', 
'Brad Pitt', 
'Denzel Washington', 
'Hugh Jackman',
'Jennifer Lawrence', 
'Johnny Depp', 
'Kate Winslet', 
'Leonardo DiCaprio', 
'Megan Fox', 
'Natalie Portman',
'Nicole Kidman', 
'Robert Downey Jr',
'Sandra Bullock', 
'Scarlett Johansson',
'Tom Cruise',
'Tom Hanks',
'Will Smith']
train_transforms = transforms.Compose([
    transforms.Resize([224,224]),# resize输入图片
    transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean = [0.485, 0.456, 0.406],
        std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到
])
 
total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1800
    Root location: hlw
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=PIL.Image.BILINEAR)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

3.数据集划分

train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset

(<torch.utils.data.dataset.Subset at 0x12f8aceda00>, <torch.utils.data.dataset.Subset at 0x12f8acedac0>)

train_size,test_size

(1440, 360)

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)

4. 数据可视化

imgs, labels = next(iter(train_dl))
imgs.shape

 torch.Size([32, 3, 224, 224])

import numpy as np
 
 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    npimg = imgs.numpy().transpose((1,2,0))
    npimg = npimg * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    npimg = npimg.clip(0, 1)
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg)
    plt.axis('off')

for X,y in test_dl:
    print('Shape of X [N, C, H, W]:', X.shape)
    print('Shape of y:', y.shape)
    break

Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])Shape of y: torch.Size([32])

二、构建简单的CNN网络

from torchvision.models import vgg16
    
model = vgg16(pretrained = True).to(device)
for param in model.parameters():
    param.requires_grad = False
 
model.classifier._modules['6'] = nn.Linear(4096,len(classNames))
 
model.to(device)
model
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=17, bias=True)
  )
)
# 查看要训练的层
params_to_update = model.parameters()
# params_to_update = []
for name,param in model.named_parameters():
    if param.requires_grad == True:
#         params_to_update.append(param)
        print("\t",name)

三、训练模型

1.优化器设置

# 优化器设置
optimizer = torch.optim.Adam(params_to_update, lr=1e-4)#要训练什么参数/
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)#学习率每5个epoch衰减成原来的1/10
loss_fn = nn.CrossEntropyLoss()

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共900张图片
    num_batches = len(dataloader)   # 批次数目,29(900/32)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
 
    return train_acc, train_loss

3.编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,8(255/32=8,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
 
    test_acc  /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

4、正式训练

训练输出层

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0
filename='checkpoint.pth'
 
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    scheduler.step()#学习率衰减
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最优模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_train_acc
        state = {
            'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
            'best_acc': best_acc,
            'optimizer' : optimizer.state_dict(),
        }
        torch.save(state, filename)
        
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)

Epoch: 1, Train_acc:12.2%, Train_loss:2.701, Test_acc:13.9%,Test_loss:2.544

Epoch: 2, Train_acc:20.8%, Train_loss:2.386, Test_acc:20.6%,Test_loss:2.377

Epoch: 3, Train_acc:26.1%, Train_loss:2.228, Test_acc:22.5%,Test_loss:2.274...

Epoch:19, Train_acc:51.6%, Train_loss:1.528, Test_acc:35.8%,Test_loss:1.864

Epoch:20, Train_acc:53.9%, Train_loss:1.499, Test_acc:35.3%,Test_loss:1.852

Done

best_acc: 0.37430555555555556

继续训练所有层

for param in model.parameters():
    param.requires_grad = True
 
# 再继续训练所有的参数,学习率调小一点
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)
 
# 损失函数
criterion = nn.CrossEntropyLoss()
# 加载之前训练好的权重参数
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model.load_state_dict(checkpoint['state_dict'])
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0
filename='best_vgg16.pth'
 
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    scheduler.step()#学习率衰减
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最优模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        state = {
            'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
            'best_acc': best_acc,
            'optimizer' : optimizer.state_dict(),
        }
        torch.save(state, filename)
        
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)

Epoch: 1, Train_acc:41.0%, Train_loss:1.654, Test_acc:57.5%,Test_loss:1.301

Epoch: 2, Train_acc:72.3%, Train_loss:0.781, Test_acc:58.9%,Test_loss:1.139

Epoch: 3, Train_acc:87.0%, Train_loss:0.381, Test_acc:67.8%,Test_loss:1.079

...

Epoch:19, Train_acc:99.3%, Train_loss:0.033, Test_acc:74.2%,Test_loss:0.895

Epoch:20, Train_acc:99.9%, Train_loss:0.003, Test_acc:74.4%,Test_loss:1.001

Done

best_acc: 0.7666666666666667

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

到此这篇关于pytorch实现好莱坞明星识别的文章就介绍到这了,更多相关pytorch实现好莱坞明星识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python科学计算之scipy——optimize用法

    python科学计算之scipy——optimize用法

    今天小编就为大家分享一篇python科学计算之scipy——optimize用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • 零基础写python爬虫之使用urllib2组件抓取网页内容

    零基础写python爬虫之使用urllib2组件抓取网页内容

    文章详细介绍了在python2.5环境下,如何使用urllib2这个python自带的组件进行抓取指定网页内容的,整个过程记录的非常的详细,也很简单,有需要的朋友可以参考下,写出自己的python爬虫
    2014-11-11
  • 基于python求两个列表的并集.交集.差集

    基于python求两个列表的并集.交集.差集

    这篇文章主要介绍了基于python求两个列表的并集.交集.差集,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • 详解Python matplotlib中的色彩使用详解

    详解Python matplotlib中的色彩使用详解

    matplotlib中提供了一些常见颜色的字符串,并封装成了几个颜色字典,这篇文章主要来和大家讲解一下matplotlib中的色彩使用,需要的可以参考一下
    2023-07-07
  • 讲解如何利用 Python完成 Saga 分布式事务

    讲解如何利用 Python完成 Saga 分布式事务

    这篇文章主要介绍了如何利用 Python 完成一个 Saga 的分布式事务,需要的朋友可以参考下面文章具体的内容
    2021-09-09
  • Python import自己的模块报错问题及解决

    Python import自己的模块报错问题及解决

    这篇文章主要介绍了Python import自己的模块报错问题及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-02-02
  • 使用Python读取.nc文件的方法详解

    使用Python读取.nc文件的方法详解

    .nc文件,即NetCDF(Network Common Data Form)文件,是一种用于存储科学数据的文件格式,本文主要为大家介绍了两种常见的读取方法,希望对大家有所帮助
    2024-03-03
  • Python实现GIF图倒放

    Python实现GIF图倒放

    这篇文章主要介绍了Python如何实现GIF图倒放,文中讲解非常细致,帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • Python 时间处理datetime实例

    Python 时间处理datetime实例

    Python Cook书中有很多章节都是针对某个库的使用进行介绍或是通过组合多个函数实现一些复杂的功能。我这里直接跳过了上一章节中对于文件处理的一些章节,直接进入对时间操作的章节。
    2008-09-09
  • 解决pycharm 误删掉项目文件的处理方法

    解决pycharm 误删掉项目文件的处理方法

    今天小编就为大家分享一篇解决pycharm 误删掉项目文件的处理方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10

最新评论