pandas的apply函数用法详解

 更新时间:2023年01月11日 09:59:45   作者:独影月下酌酒  
本文主要介绍了pandas的apply函数用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.基本信息

Pandas 的 apply() 方法是用来调用一个函数(Python method),让此函数对数据对象进行批量处理。Pandas 的很多对象都可以使用 apply() 来调用函数,如 Dataframe、Series、分组对象、各种时间序列等。

2.语法结构

apply() 使用时,通常放入一个 lambda 函数表达式、或一个函数作为操作运算,官方上给出DataFrame的 apply() 用法:

DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwargs)

参数:

func:函数或 lambda 表达式,应用于每行或者每列

axis:{0 or ‘index’, 1 or ‘columns’}, 默认为0

  • 0 or ‘index’: 表示函数处理的是每一列
  • 1 or ‘columns’: 表示函数处理的是每一行

raw:bool 类型,默认为 False;

  • False ,表示把每一行或列作为 Series 传入函数中;
  • True,表示接受的是 ndarray 数据类型;

result_type:{‘expand’, ‘reduce’, ‘broadcast’, None}, default None

These only act when axis=1 (columns):

  • ‘expand’ : 列表式的结果将被转化为列。
  • ‘reduce’ : 如果可能的话,返回一个 Series,而不是展开类似列表的结果。这与 expand 相反。
  • ‘broadcast’ : 结果将被广播到 DataFrame 的原始形状,原始索引和列将被保留。

args: func 的位置参数

**kwargs:要作为关键字参数传递给 func 的其他关键字参数,1.3.0 开始支持

返回值:

Series 或者 DataFrame:沿数据的给定轴应用 func 的结果

Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns(``axis=1``). 
传递给函数的对象是Series对象,其索引是DataFrame的索引(axis=0)或DataFrame的列(axis=1)。
By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise,it depends on the `result_type` argument.
默认情况下( result_type=None),最终的返回类型是从应用函数的返回类型推断出来的。否则,它取决于' result_type '参数。

注:DataFrame与Series的区别与联系:

区别:

  • series,只是一个一维结构,它由index和value组成。
  • dataframe,是一个二维结构,除了拥有index和value之外,还拥有column。

联系:

  • dataframe由多个series组成,无论是行还是列,单独拆分出来都是一个series。

3.使用案例

3.1 DataFrame使用apply

官方使用案例

import pandas as pd
import numpy as np

df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
df
   A  B
0  4  9
1  4  9
2  4  9


# 使用numpy通用函数 (如 np.sqrt(df)),
df.apply(np.sqrt)
'''
     A    B
0  2.0  3.0
1  2.0  3.0
2  2.0  3.0
'''

# 使用聚合功能
df.apply(np.sum, axis=0)
'''
A    12
B    27
dtype: int64
'''

df.apply(np.sum, axis=1)
'''
0    13
1    13
2    13
dtype: int64
'''

# 在每行上返回类似列表的内容
df.apply(lambda x: [1, 2], axis=1)
'''
0    [1, 2]
1    [1, 2]
2    [1, 2]
dtype: object
'''

# result_type='expand' 将类似列表的结果扩展到数据的列
df.apply(lambda x: [1, 2], axis=1, result_type='expand')

'''
   0  1
0  1  2
1  1  2
2  1  2
'''

# 在函数中返回一个序列,生成的列名将是序列索引。
df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)

'''
   foo  bar
0    1    2
1    1    2
2    1    2
'''

# result_type='broadcast' 将确保函数返回相同的形状结果
# 无论是 list-like 还是 scalar,并沿轴进行广播
# 生成的列名将是原始列名。
df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
'''
A  B
0  1  2
1  1  2
2  1  2
'''

其他案例:

import numpy as np
import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3],
                   'B': [4, 5, 6],
                   'C': [7, 8, 9]},
                  index=['a', 'b', 'c'])
df
    A    B    C
a    1    4    7
b    2    5    8
c    3    6    9

# 对各列应用函数 axis=0
df.apply(lambda x: np.sum(x))
A     6
B    15
C    24
dtype: int64

# 对各行应用函数
df.apply(lambda x: np.sum(x), axis=1)
a    12
b    15
c    18
dtype: int64

3.2 Series使用apply

官网案例

s = pd.Series([20, 21, 12],index=['London', 'New York', 'Helsinki'])
s
'''
London      20
New York    21
Helsinki    12
dtype: int64
'''

# 定义函数并将其作为参数传递给 apply,求值平方化。
def square(x):
     return x ** 2

s.apply(square)
'''
London      400
New York    441
Helsinki    144
dtype: int64
'''

# 通过将匿名函数作为参数传递给 apply
s.apply(lambda x: x ** 2)
'''
London      400
New York    441
Helsinki    144
dtype: int64
'''

# 定义一个需要附加位置参数的自定义函数
# 并使用args关键字传递这些附加参数。
def subtract_custom_value(x, custom_value):
     return x - custom_value

s.apply(subtract_custom_value, args=(5,))
'''
London      15
New York    16
Helsinki     7
dtype: int64
'''

# 定义一个接受关键字参数并将这些参数传递
# 给 apply 的自定义函数。
def add_custom_values(x, **kwargs):
     for month in kwargs:
         x += kwargs[month]
     return x

s.apply(add_custom_values, june=30, july=20, august=25)
'''
London      95
New York    96
Helsinki    87
dtype: int64
'''

# 使用Numpy库中的函数
s.apply(np.log)
'''
London      2.995732
New York    3.044522
Helsinki    2.484907
dtype: float64
'''

3.3 其他案例

import pandas as pd

# 显示所有列
pd.set_option('display.max_columns', None)
# 显示所有行
pd.set_option('display.max_rows', None)
# 设置value的显示长度为100,默认为50
pd.set_option('max_colwidth', 100)
# 用来计算日期差的包
import datetime


def dataInterval(data1, data2):
    """
    Args:
    :param data1: datetime
    :param data2: datetime
    :return: delta days
    """
    d1 = datetime.datetime.strptime(data1, '%Y-%m-%d')
    d2 = datetime.datetime.strptime(data2, '%Y-%m-%d')
    delta = d1 - d2
    return delta.days


def getInterval(arrLike):  
    """
    Args:
    :param arrLike: DataFrame 
    :return: delta days
    """
    PublishedTime = arrLike['PublishedTime']
    ReceivedTime = arrLike['ReceivedTime']
    days = dataInterval(PublishedTime.strip(), ReceivedTime.strip()) 
    return days


def getInterval_new(arrLike, before, after): 
    """
    Args:
    :param arrLike: DataFrame
    :param before: forward time
    :param after: backwar time
    :return: delta days
    """
    before = arrLike[before]
    after = arrLike[after]
    days = dataInterval(after.strip(), before.strip())  
    return days



if __name__ == '__main__':
    df = pd.read_excel('./data/NS_info.xls')
    print(df.head())
    # method 1
    df['TimeInterval'] = df.apply(getInterval, axis=1)
    print(df.head())
    # method 2
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, 
                                  args=('ReceivedTime', 'PublishedTime')) 
    # method 3
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, 
                   **{'before': 'ReceivedTime', 'after': 'PublishedTime'})  
    # method 4
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, before='ReceivedTime', after='PublishedTime') 

4.总结

1.apply方法都是通过传入一个函数或者lambda表达式对数据进行批量处理

2.apply方法处理的都是一个Series对象

参考链接:

1.https://blog.csdn.net/missyougoon/article/details/83301712

2.https://blog.csdn.net/qq_19528953/article/details/79348929

到此这篇关于pandas的apply函数用法详解的文章就介绍到这了,更多相关pandas apply用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python使用rabbitmq实现网络爬虫示例

    python使用rabbitmq实现网络爬虫示例

    这篇文章主要介绍了python使用RabbitMQ实现网络爬虫的示例,需要的朋友可以参考下
    2014-02-02
  • Python如何检验样本是否服从正态分布

    Python如何检验样本是否服从正态分布

    这篇文章主要介绍了Python如何检验样本是否服从正态分布问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • Django数据库迁移报错InconsistentMigrationHistory

    Django数据库迁移报错InconsistentMigrationHistory

    最近在使用Django,学习了一下Django数据库迁移,在执行迁移命令时,突然报错,本文就总结了一下原因,感兴趣的小伙伴们可以参考一下
    2021-05-05
  • python读取和保存mat文件的方法

    python读取和保存mat文件的方法

    本文主要介绍了python读取和保存mat文件的方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-08-08
  • 浅谈Python 的枚举 Enum

    浅谈Python 的枚举 Enum

    下面小编就为大家带来一篇浅谈Python 的枚举 Enum。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • Python利用随机函数生成变化图形详解

    Python利用随机函数生成变化图形详解

    这篇文章主要介绍了如何在Python中利用随机函数生成变化的图形,文中的示例代码讲解详细,对我们学习有一定吧参考价值,需要的可以了解一下
    2022-04-04
  • Python进阶之协程详解

    Python进阶之协程详解

    这篇文章主要为大家介绍了Python进阶之协程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-01-01
  • Python生成随机MAC地址

    Python生成随机MAC地址

    这篇文章主要介绍了Python生成随机MAC地址的相关资料,需要的朋友可以参考下
    2015-03-03
  • 解决redis与Python交互取出来的是bytes类型的问题

    解决redis与Python交互取出来的是bytes类型的问题

    这篇文章主要介绍了解决redis与Python交互取出来的是bytes类型的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • Python操作PDF实现制作数据报告

    Python操作PDF实现制作数据报告

    Python操作PDF的库有很多,比如PyPDF2、pdfplumber、PyMuPDF等等。本文将利用FPDF模块操作PDF实现制作数据报告,感兴趣的小伙伴可以尝试一下
    2022-12-12

最新评论