Python7个爬虫小案例详解(附源码)下篇
本次的7个python爬虫小案例涉及到了re正则、xpath、beautiful soup、selenium等知识点,非常适合刚入门python爬虫的小伙伴参考学习。
前言
关于Python7个爬虫小案例的文章分为三篇,本篇为下篇,共三题,其余两篇内容请关注!
题目五:
实现多种方法模拟登录知乎,并爬取与一个与江汉大学有关问题和答案
首先使用selenium打开知乎登录页面,接着使用手机进行二维码扫描登录
进入页面后,打开开发者工具,找到元素,,定位输入框,输入汉江大学,然后点击搜索按钮
以第二条帖子为例,进行元素分析 。
源代码及结果截图:
from time import sleep from selenium.webdriver.chrome.service import Service from selenium.webdriver import Chrome,ChromeOptions from selenium.webdriver.common.by import By import warnings def main(): #忽略警告 warnings.filterwarnings("ignore") # 创建一个驱动 service = Service('chromedriver.exe') options = ChromeOptions() # 伪造浏览器 options.add_experimental_option('excludeSwitches', ['enable-automation','enable-logging']) options.add_experimental_option('useAutomationExtension', False) # 创建一个浏览器 driver = Chrome(service=service,options=options) # 绕过检测 driver.execute_cdp_cmd("Page.addScriptToEvaluateOnNewDocument", { "source": """ Object.defineProperty(navigator, 'webdriver', { get: () => false }) """ }) # 打开知乎登录页面 driver.get('https://www.zhihu.com/') sleep(30) # 点击搜索框 driver.find_element(By.ID,'Popover1-toggle').click() # 输入内容 driver.find_element(By.ID,'Popover1-toggle').send_keys('汉江大学') sleep(2) # 点击搜索图标 driver.find_element(By.XPATH,'//*[@id="root"]/div/div[2]/header/div[2]/div[1]/div/form/div/div/label/button').click() # 等待页面加载完 driver.implicitly_wait(20) # 获取标题 title = driver.find_element(By.XPATH,'//*[@id="SearchMain"]/div/div/div/div/div[2]/div/div/div/h2/div/a/span').text # 点击阅读全文 driver.find_element(By.XPATH,'//*[@id="SearchMain"]/div/div/div/div/div[2]/div/div/div/div/span/div/button').click() sleep(2) # 获取帖子内容 content = driver.find_element(By.XPATH,'//*[@id="SearchMain"]/div/div/div/div/div[2]/div/div/div/div/span[1]/div/span/p').text # 点击评论 driver.find_element(By.XPATH,'//*[@id="SearchMain"]/div/div/div/div/div[2]/div/div/div/div/div[3]/div/div/button[1]').click() sleep(2) # 点击获取更多评论 driver.find_element(By.XPATH,'//*[@id="SearchMain"]/div/div/div/div/div[2]/div/div/div/div[2]/div/div/div[2]/div[2]/div/div[3]/button').click() sleep(2) # 获取评论数据的节点 divs = driver.find_elements(By.XPATH,'/html/body/div[6]/div/div/div[2]/div/div/div/div[2]/div[3]/div') try: for div in divs: # 评论内容 comment = div.find_element(By.XPATH,'./div/div/div[2]').text f.write(comment) # 写入文件 f.write('\n') print(comment) except: driver.close() if __name__ == '__main__': # 创建文件存储数据 with open('05.txt','a',encoding='utf-8')as f: main()
题目六:
综合利用所学知识,爬取某个某博用户前5页的微博内容
这里我们选取了人民日报的微博内容进行爬取,具体页面我就不放这了,怕违规。
源代码:
import requests import csv from time import sleep import random def main(page): url = f'https://weibo.com/ajax/statuses/mymblog?uid=2803301701&page={page}&feature=0&since_id=4824543023860882kp{page}' headers = { 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/106.0.0.0 Safari/537.36', 'cookie':'SINAGLOBAL=6330339198688.262.1661412257300; ULV=1661412257303:1:1:1:6330339198688.262.1661412257300:; PC_TOKEN=8b935a3a6e; SUBP=0033WrSXqPxfM725Ws9jqgMF55529P9D9WWoQDW1G.Vsux_WIbm9NsCq5JpX5KMhUgL.FoMNShMN1K5ESKq2dJLoIpjLxKnL1h.LB.-LxKqLBoBLB.-LxKqLBKeLB--t; ALF=1697345086; SSOLoginState=1665809086; SCF=Auy-TaGDNaCT06C4RU3M3kQ0-QgmTXuo9D79pM7HVAjce1K3W92R1-fHAP3gXR6orrHK_FSwDsodoGTj7nX_1Hw.; SUB=_2A25OTkruDeRhGeFJ71UW-S7OzjqIHXVtOjsmrDV8PUNbmtANLVKmkW9Nf9yGtaKedmyOsDKGh84ivtfHMGwvRNtZ; XSRF-TOKEN=LK4bhZJ7sEohF6dtSwhZnTS4; WBPSESS=PfYjpkhjwcpEXrS7xtxJwmpyQoHWuGAMhQkKHvr_seQNjwPPx0HJgSgqWTZiNRgDxypgeqzSMsbVyaDvo7ng6uTdC9Brt07zYoh6wXXhQjMtzAXot-tZzLRlW_69Am82CXWOFfcvM4AzsWlAI-6ZNA==' } resp = requests.get(url,headers=headers) data_list = resp.json()['data']['list'] for item in data_list: created_time = item['created_at'] # 发布时间 author = item['user']['screen_name'] # 作者 title = item['text_raw'] # 帖子标题 reposts_count = item['reposts_count'] # 转发数 comments_count = item['comments_count'] # 评论数 attitudes_count = item['attitudes_count'] # 点赞数 csvwriter.writerow((created_time,author,title,reposts_count,comments_count,attitudes_count)) print(created_time,author,title,reposts_count,comments_count,attitudes_count) print(f'第{page}页爬取完毕') if __name__ == '__main__': # 创建保存数据的csv文件 with open('06-2.csv','a',encoding='utf-8',newline='')as f: csvwriter = csv.writer(f) # 添加文件表头 csvwriter.writerow(('发布时间','发布作者','帖子标题','转发数','评论数','点赞数')) for page in range(1,6): # 爬取前5页数据 main(page) sleep(5+random.random())
题目七:
自选一个热点或者你感兴趣的主题,爬取数据并进行简要数据分析
(例如,通过爬取电影的名称、类型、总票房等数据统计分析不同类型电影的平均票房,十年间每年票房冠军的票房走势等;通过爬取中国各省份地区人口数量,统计分析我国人口分布等)
本次选取的网址是艺恩娱数,目标是爬取里面的票房榜数据,通过开发者工具抓包分析找到数据接口,然后开始编写代码进行数据抓取。
源代码及结果截图:
import requests import csv import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示 plt.rcParams['axes.unicode_minus'] = False #解决符号无法显示 def main(): headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36',} data = { 'r': '0.9936776079863086', 'top': '50', 'type': '0', } resp = requests.post('https://ys.endata.cn/enlib-api/api/home/getrank_mainland.do', headers=headers, data=data) data_list = resp.json()['data']['table0'] for item in data_list: rank = item['Irank'] # 排名 MovieName = item['MovieName'] # 电影名称 ReleaseTime = item['ReleaseTime'] # 上映时间 TotalPrice = item['BoxOffice'] # 总票房(万) AvgPrice = item['AvgBoxOffice'] # 平均票价 AvgAudienceCount = item['AvgAudienceCount'] # 平均场次 # 写入csv文件 csvwriter.writerow((rank,MovieName,ReleaseTime,TotalPrice,AvgPrice,AvgAudienceCount)) print(rank,MovieName,ReleaseTime,TotalPrice,AvgPrice,AvgAudienceCount) def data_analyze(): # 读取数据 data = pd.read_csv('07.csv') # 从上映时间中提取出年份 data['年份'] = data['上映时间'].apply(lambda x: x.split('-')[0]) # 各年度上榜电影总票房占比 df1 = data.groupby('年份')['总票房(万)'].sum() plt.figure(figsize=(6, 6)) plt.pie(df1, labels=df1.index.to_list(), autopct='%1.2f%%') plt.title('各年度上榜电影总票房占比') plt.show() # 各个年份总票房趋势 df1 = data.groupby('年份')['总票房(万)'].sum() plt.figure(figsize=(6, 6)) plt.plot(df1.index.to_list(), df1.values.tolist()) plt.title('各年度上榜电影总票房趋势') plt.show() # 平均票价最贵的前十名电影 print(data.sort_values(by='平均票价', ascending=False)[['年份', '电影名称', '平均票价']].head(10)) # 平均场次最高的前十名电影 print(data.sort_values(by='平均场次', ascending=False)[['年份', '电影名称', '平均场次']].head(10)) if __name__ == '__main__': # 创建保存数据的csv文件 with open('07.csv', 'w', encoding='utf-8',newline='') as f: csvwriter = csv.writer(f) # 添加文件表头 csvwriter.writerow(('排名', '电影名称', '上映时间', '总票房(万)', '平均票价', '平均场次')) main() # 数据分析 data_analyze()
从年度上榜电影票房占比来看,2019年占比最高,说明2019年这一年的电影质量都很不错,上榜电影多而且票房高。
从趋势来看,从2016年到2019年,上榜电影总票房一直在增长,到2019年达到顶峰,说明这一年电影是非常的火爆,但是从2020年急剧下滑,最大的原因应该是这一年年初开始爆发疫情,导致贺岁档未初期上映,而且由于疫情影响,电影院一直处于关闭状态,所以这一年票房惨淡。
这篇关于Python7个爬虫小案例详解(附源码)下篇的文章就介绍到这了,其他两个部分的内容(上、中篇)请搜索脚本之家以前的文章或继续浏览下面的相关文章。
好了,本次七个案例的分享到此全部结束,希望对刚入手爬虫的小伙伴有所帮助。
希望大家以后多多支持脚本之家!
- Python7个爬虫小案例详解(附源码)中篇
- Python7个爬虫小案例详解(附源码)上篇
- 利用Python爬虫爬取金融期货数据的案例分析
- Python爬虫采集Tripadvisor数据案例实现
- Python Ajax爬虫案例分享
- Python爬虫入门案例之爬取去哪儿旅游景点攻略以及可视化分析
- Python爬虫入门案例之爬取二手房源数据
- Python爬虫入门案例之回车桌面壁纸网美女图片采集
- Python爬虫之Scrapy环境搭建案例教程
- 用Python爬虫破解滑动验证码的案例解析
- python爬虫系列网络请求案例详解
- python爬虫破解字体加密案例详解
- python爬虫线程池案例详解(梨视频短视频爬取)
- python爬虫scrapy框架的梨视频案例解析
- python爬虫利器之requests库的用法(超全面的爬取网页案例)
- Python爬虫实战案例之爬取喜马拉雅音频数据详解
- Python爬虫Scrapy框架CrawlSpider原理及使用案例
- Python爬虫之对CSDN榜单进行分析
相关文章
Python爬虫:Request Payload和Form Data的简单区别说明
这篇文章主要介绍了Python爬虫:Request Payload和Form Data的简单区别说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-04-04
最新评论