go语言算法题解二叉树的拷贝、镜像和对称

 更新时间:2023年01月12日 15:54:39   作者:Hann Yang  
这篇文章主要为大家详细介绍了go语言算法题解二叉树的拷贝、镜像和对称,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下

拷贝副本

复制一个二叉树副本,广度优先遍历同时设置两个队列,一个遍历一个复制创建。

func Copy(bt *biTree) *biTree {
	root := bt.Root
	if root == nil {
		return &biTree{}
	}
	node := &btNode{Data: root.Data}
	Queue1, Queue2 := []*btNode{root}, []*btNode{node}
	for len(Queue1) > 0 {
		p1, p2 := Queue1[0], Queue2[0]
		Queue1, Queue2 = Queue1[1:], Queue2[1:]
		if p1.Lchild != nil {
			Node := &btNode{Data: p1.Lchild.Data}
			p2.Lchild = Node
			Queue1 = append(Queue1, p1.Lchild)
			Queue2 = append(Queue2, Node)
		}
		if p1.Rchild != nil {
			Node := &btNode{Data: p1.Rchild.Data}
			p2.Rchild = Node
			Queue1 = append(Queue1, p1.Rchild)
			Queue2 = append(Queue2, Node)
		}
	}
	return &biTree{Root: node}
}

相同二叉树

递归法

func Equal(bt1, bt2 *btNode) bool {
	if bt1 == nil && bt2 == nil {
		return true
	} else if bt1 == nil || bt2 == nil {
		return false
	}
	if bt1.Data != bt2.Data {
		return false
	}
	return Equal(bt1.Lchild, bt2.Lchild) && Equal(bt1.Rchild, bt2.Rchild)
}
 
func (bt *biTree) Equal(bt2 *biTree) bool {
	return Equal(bt.Root, bt2.Root)
}

BFS

过程与复制副本类似,设置两个队列,同时遍历只要有一处不同即返回不相同。

func (bt *biTree) SameAs(bt2 *biTree) bool {
	root1, root2 := bt.Root, bt2.Root
	if root1 == nil && root2 == nil {
		return true
	} else if root1 == nil || root2 == nil {
		return false
	}
	Queue1, Queue2 := []*btNode{root1}, []*btNode{root2}
	p1, p2 := Queue1[0], Queue2[0]
	for len(Queue1) > 0 && len(Queue2) > 0 {
		p1, p2 = Queue1[0], Queue2[0]
		Queue1, Queue2 = Queue1[1:], Queue2[1:]
		if p1.Lchild != nil {
			if p2.Lchild == nil || p1.Lchild.Data != p2.Lchild.Data {
				return false
			}
			Queue1 = append(Queue1, p1.Lchild)
			Queue2 = append(Queue2, p2.Lchild)
		} else if p2.Lchild != nil {
			if p1.Lchild == nil || p1.Lchild.Data != p2.Lchild.Data {
				return false
			}
			Queue1 = append(Queue1, p1.Lchild)
			Queue2 = append(Queue2, p2.Lchild)
		}
		if p1.Rchild != nil {
			if p2.Rchild == nil || p1.Rchild.Data != p2.Rchild.Data {
				return false
			}
			Queue1 = append(Queue1, p1.Rchild)
			Queue2 = append(Queue2, p2.Rchild)
		} else if p2.Rchild != nil {
			if p1.Rchild == nil || p1.Rchild.Data != p2.Rchild.Data {
				return false
			}
			Queue1 = append(Queue1, p1.Rchild)
			Queue2 = append(Queue2, p2.Rchild)
		}
	}
	return true
}

镜像二叉树

生成一棵二叉树的镜像:

递归法

func (bt *btNode) InvertNodes() {
	if bt != nil {
		bt.Lchild.InvertNodes()
		bt.Rchild.InvertNodes()
		bt.Lchild, bt.Rchild = bt.Rchild, bt.Lchild
	}
}
 
func (bt *biTree) Mirror() {
	bt.Root.InvertNodes()
}

BFS

func Mirror(bt *biTree) *biTree {
	root := bt.Root
	if root == nil {
		return &biTree{}
	}
	node := &btNode{Data: root.Data}
	Queue1, Queue2 := []*btNode{root}, []*btNode{node}
	for len(Queue1) > 0 {
		p1, p2 := Queue1[0], Queue2[0]
		Queue1, Queue2 = Queue1[1:], Queue2[1:]
		if p1.Lchild != nil {
			Node := &btNode{Data: p1.Lchild.Data}
			p2.Rchild = Node
			Queue1 = append(Queue1, p1.Lchild)
			Queue2 = append(Queue2, Node)
		}
		if p1.Rchild != nil {
			Node := &btNode{Data: p1.Rchild.Data}
			p2.Lchild = Node
			Queue1 = append(Queue1, p1.Rchild)
			Queue2 = append(Queue2, Node)
		}
	}
	return &biTree{Root: node}
}

对称二叉树

方法一:判断左子树与右子树的反转是否相等

func (bt *biTree) IsSymmetry() bool {
	return Equal(bt.Root.Lchild, bt.Root.Rchild.InvertNodes())
}

方法二:判断自身与镜像是否相同

func (bt *biTree) IsSymmetry2() bool {
	bt2 := Mirror(bt)
	return bt.SameAs(bt2)
}

判断二棵二叉树是否互为镜像

方法一:生成其中一棵的镜像,判断镜像与另一棵是否相同

func (bt *biTree) IsMirror(bt2 *biTree) bool {
	return bt.SameAs(Mirror(bt2))
}

方法二:分别以此二棵树作左右子树生成一棵新树,判断新树是否左右对称

func (bt *biTree) IsMirror(bt2 *biTree) bool {
	root := &biTree{&btNode{1, bt.Root, bt2.Root}}
	return root.IsSymmetry()
}

包biTree函数汇总

至此,《数据结构:二叉树》系列(1~3)已累积了从创建、遍历等功能的20多个函数和方法,汇总如下:

/* The Package biTree
 * https://hannyang.blog.csdn.net/article/details/126556548
 *
 * based on Go program by Hann Yang,
 * modified on 2022/8/31.
 */
 
package biTree
 
type btNode struct {
	Data   interface{}
	Lchild *btNode
	Rchild *btNode
}
 
type biTree struct {
	Root *btNode
}
 
func Build(data interface{}) *biTree {
	var list []interface{}
	if data == nil {
		return &biTree{}
	}
	switch data.(type) {
	case []interface{}:
		list = append(list, data.([]interface{})...)
	default:
		list = append(list, data)
	}
	if len(list) == 0 {
		return &biTree{}
	}
	node := &btNode{Data: list[0]}
	list = list[1:]
	Queue := []*btNode{node}
	for len(list) > 0 {
		if len(Queue) == 0 {
			//panic("Given array can not build binary tree.")
			return &biTree{Root: node}
		}
		cur := Queue[0]
		val := list[0]
		Queue = Queue[1:]
		if val != nil {
			cur.Lchild = &btNode{Data: val}
			if cur.Lchild != nil {
				Queue = append(Queue, cur.Lchild)
			}
		}
		list = list[1:]
		if len(list) > 0 {
			val := list[0]
			if val != nil {
				cur.Rchild = &btNode{Data: val}
				if cur.Rchild != nil {
					Queue = append(Queue, cur.Rchild)
				}
			}
			list = list[1:]
		}
	}
	return &biTree{Root: node}
}
 
func Create(data interface{}) *biTree {
	var list []interface{}
	btree := &biTree{}
	switch data.(type) {
	case []interface{}:
		list = append(list, data.([]interface{})...)
	default:
		list = append(list, data)
	}
	if len(list) > 0 {
		btree.Root = &btNode{Data: list[0]}
		for _, data := range list[1:] {
			btree.AppendNode(data)
		}
	}
	return btree
}
 
func (bt *biTree) Append(data interface{}) {
	var list []interface{}
	switch data.(type) {
	case []interface{}:
		list = append(list, data.([]interface{})...)
	default:
		list = append(list, data)
	}
	if len(list) > 0 {
		for _, data := range list {
			bt.AppendNode(data)
		}
	}
}
 
func (bt *biTree) AppendNode(data interface{}) {
	root := bt.Root
	if root == nil {
		bt.Root = &btNode{Data: data}
		return
	}
	Queue := []*btNode{root}
	for len(Queue) > 0 {
		cur := Queue[0]
		Queue = Queue[1:]
		if cur.Lchild != nil {
			Queue = append(Queue, cur.Lchild)
		} else {
			cur.Lchild = &btNode{Data: data}
			return
		}
		if cur.Rchild != nil {
			Queue = append(Queue, cur.Rchild)
		} else {
			cur.Rchild = &btNode{Data: data}
			break
		}
	}
}
 
func (bt *biTree) Levelorder() []interface{} { //BFS
	var res []interface{}
	root := bt.Root
	if root == nil {
		return res
	}
	Queue := []*btNode{root}
	for len(Queue) > 0 {
		cur := Queue[0]
		Queue = Queue[1:]
		res = append(res, cur.Data)
		if cur.Lchild != nil {
			Queue = append(Queue, cur.Lchild)
		}
		if cur.Rchild != nil {
			Queue = append(Queue, cur.Rchild)
		}
	}
	return res
}
 
func (bt *biTree) BForder2D() [][]interface{} {
	var res [][]interface{}
	root := bt.Root
	if root == nil {
		return res
	}
	Queue := []*btNode{root}
	for len(Queue) > 0 {
		Nodes := []interface{}{}
		Levels := len(Queue)
		for Levels > 0 {
			cur := Queue[0]
			Queue = Queue[1:]
			Nodes = append(Nodes, cur.Data)
			Levels--
			if cur.Lchild != nil {
				Queue = append(Queue, cur.Lchild)
			}
			if cur.Rchild != nil {
				Queue = append(Queue, cur.Rchild)
			}
		}
		res = append(res, Nodes)
	}
	return res
}
 
func (bt *biTree) Preorder() []interface{} {
	var res []interface{}
	cur := bt.Root
	Stack := []*btNode{}
	for cur != nil || len(Stack) > 0 {
		for cur != nil {
			res = append(res, cur.Data)
			Stack = append(Stack, cur)
			cur = cur.Lchild
		}
		if len(Stack) > 0 {
			cur = Stack[len(Stack)-1]
			Stack = Stack[:len(Stack)-1]
			cur = cur.Rchild
		}
	}
	return res
}
 
func (bt *biTree) Inorder() []interface{} {
	var res []interface{}
	cur := bt.Root
	Stack := []*btNode{}
	for cur != nil || len(Stack) > 0 {
		for cur != nil {
			Stack = append(Stack, cur)
			cur = cur.Lchild
		}
		if len(Stack) > 0 {
			cur = Stack[len(Stack)-1]
			res = append(res, cur.Data)
			Stack = Stack[:len(Stack)-1]
			cur = cur.Rchild
		}
	}
	return res
}
 
func (bt *biTree) Postorder() []interface{} {
	var res []interface{}
	if bt.Root == nil {
		return res
	}
	cur, pre := &btNode{}, &btNode{}
	Stack := []*btNode{bt.Root}
	for len(Stack) > 0 {
		cur = Stack[len(Stack)-1]
		if cur.Lchild == nil && cur.Rchild == nil ||
			pre != nil && (pre == cur.Lchild || pre == cur.Rchild) {
			res = append(res, cur.Data)
			Stack = Stack[:len(Stack)-1]
			pre = cur
		} else {
			if cur.Rchild != nil {
				Stack = append(Stack, cur.Rchild)
			}
			if cur.Lchild != nil {
				Stack = append(Stack, cur.Lchild)
			}
		}
	}
	return res
}
 
func (bt *btNode) MaxDepth() int {
	if bt == nil {
		return 0
	}
	Lmax := bt.Lchild.MaxDepth()
	Rmax := bt.Rchild.MaxDepth()
	return 1 + Max(Lmax, Rmax)
}
 
func (bt *btNode) MinDepth() int {
	if bt == nil {
		return 0
	}
	Lmin := bt.Lchild.MinDepth()
	Rmin := bt.Rchild.MinDepth()
	return 1 + Min(Lmin, Rmin)
}
 
func (bt *biTree) Depth() int { //BFS
	res := 0
	root := bt.Root
	if root == nil {
		return res
	}
	Queue := []*btNode{root}
	for len(Queue) > 0 {
		Levels := len(Queue)
		for Levels > 0 {
			cur := Queue[0]
			Queue = Queue[1:]
			if cur.Lchild != nil {
				Queue = append(Queue, cur.Lchild)
			}
			if cur.Rchild != nil {
				Queue = append(Queue, cur.Rchild)
			}
			Levels--
		}
		res++
	}
	return res
}
 
func (bt *btNode) Degree() int {
	res := 0
	if bt.Lchild != nil {
		res++
	}
	if bt.Rchild != nil {
		res++
	}
	return res
}
 
func (bt *biTree) LeafNodeBFS() []interface{} {
	var res []interface{}
	root := bt.Root
	if root == nil {
		return res
	}
	Queue := []*btNode{root}
	for len(Queue) > 0 {
		cur := Queue[0]
		Queue = Queue[1:]
		//if cur.Lchild == nil && cur.Rchild == nil {
		if cur.Degree() == 0 {
			res = append(res, cur.Data)
		}
		if cur.Lchild != nil {
			Queue = append(Queue, cur.Lchild)
		}
		if cur.Rchild != nil {
			Queue = append(Queue, cur.Rchild)
		}
	}
	return res
}
 
func (bt *biTree) LeafNodeDFS() []interface{} {
	var res []interface{}
	cur := bt.Root
	Stack := []*btNode{}
	for cur != nil || len(Stack) > 0 {
		for cur != nil {
			//if cur.Lchild == nil && cur.Rchild == nil {
			if cur.Degree() == 0 {
				res = append(res, cur.Data)
			}
			Stack = append(Stack, cur)
			cur = cur.Lchild
		}
		if len(Stack) > 0 {
			cur = Stack[len(Stack)-1]
			Stack = Stack[:len(Stack)-1]
			cur = cur.Rchild
		}
	}
	return res
}
 
func (bt *btNode) InvertNodes() *btNode {
	if bt != nil {
		bt.Lchild.InvertNodes()
		bt.Rchild.InvertNodes()
		bt.Lchild, bt.Rchild = bt.Rchild, bt.Lchild
	}
	return bt
}
 
func (bt *biTree) Mirror() {
	bt.Root.InvertNodes()
}
 
func Copy(bt *biTree) *biTree {
	root := bt.Root
	if root == nil {
		return &biTree{}
	}
	node := &btNode{Data: root.Data}
	Queue1, Queue2 := []*btNode{root}, []*btNode{node}
	for len(Queue1) > 0 {
		p1, p2 := Queue1[0], Queue2[0]
		Queue1, Queue2 = Queue1[1:], Queue2[1:]
		if p1.Lchild != nil {
			Node := &btNode{Data: p1.Lchild.Data}
			p2.Lchild = Node
			Queue1 = append(Queue1, p1.Lchild)
			Queue2 = append(Queue2, Node)
		}
		if p1.Rchild != nil {
			Node := &btNode{Data: p1.Rchild.Data}
			p2.Rchild = Node
			Queue1 = append(Queue1, p1.Rchild)
			Queue2 = append(Queue2, Node)
		}
	}
	return &biTree{Root: node}
}
 
func Mirror(bt *biTree) *biTree {
	root := bt.Root
	if root == nil {
		return &biTree{}
	}
	node := &btNode{Data: root.Data}
	Queue1, Queue2 := []*btNode{root}, []*btNode{node}
	for len(Queue1) > 0 {
		p1, p2 := Queue1[0], Queue2[0]
		Queue1, Queue2 = Queue1[1:], Queue2[1:]
		if p1.Lchild != nil {
			Node := &btNode{Data: p1.Lchild.Data}
			p2.Rchild = Node
			Queue1 = append(Queue1, p1.Lchild)
			Queue2 = append(Queue2, Node)
		}
		if p1.Rchild != nil {
			Node := &btNode{Data: p1.Rchild.Data}
			p2.Lchild = Node
			Queue1 = append(Queue1, p1.Rchild)
			Queue2 = append(Queue2, Node)
		}
	}
	return &biTree{Root: node}
}
 
func Max(L, R int) int {
	if L > R {
		return L
	} else {
		return R
	}
}
 
func Min(L, R int) int {
	if L < R {
		return L
	} else {
		return R
	}
}
 
func Equal(bt1, bt2 *btNode) bool {
	if bt1 == nil && bt2 == nil {
		return true
	} else if bt1 == nil || bt2 == nil {
		return false
	}
	if bt1.Data != bt2.Data {
		return false
	}
	return Equal(bt1.Lchild, bt2.Lchild) && Equal(bt1.Rchild, bt2.Rchild)
}
 
func (bt *biTree) Equal(bt2 *biTree) bool {
	return Equal(bt.Root, bt2.Root)
}
 
func (bt *biTree) SameAs(bt2 *biTree) bool {
	root1, root2 := bt.Root, bt2.Root
	if root1 == nil && root2 == nil {
		return true
	} else if root1 == nil || root2 == nil {
		return false
	}
	Queue1, Queue2 := []*btNode{root1}, []*btNode{root2}
	p1, p2 := Queue1[0], Queue2[0]
	for len(Queue1) > 0 && len(Queue2) > 0 {
		p1, p2 = Queue1[0], Queue2[0]
		Queue1, Queue2 = Queue1[1:], Queue2[1:]
		if p1.Lchild != nil {
			if p2.Lchild == nil || p1.Lchild.Data != p2.Lchild.Data {
				return false
			}
			Queue1 = append(Queue1, p1.Lchild)
			Queue2 = append(Queue2, p2.Lchild)
		} else if p2.Lchild != nil {
			if p1.Lchild == nil || p1.Lchild.Data != p2.Lchild.Data {
				return false
			}
			Queue1 = append(Queue1, p1.Lchild)
			Queue2 = append(Queue2, p2.Lchild)
		}
		if p1.Rchild != nil {
			if p2.Rchild == nil || p1.Rchild.Data != p2.Rchild.Data {
				return false
			}
			Queue1 = append(Queue1, p1.Rchild)
			Queue2 = append(Queue2, p2.Rchild)
		} else if p2.Rchild != nil {
			if p1.Rchild == nil || p1.Rchild.Data != p2.Rchild.Data {
				return false
			}
			Queue1 = append(Queue1, p1.Rchild)
			Queue2 = append(Queue2, p2.Rchild)
		}
	}
	return true
}
 
func (bt *biTree) MirrorOf(bt2 *biTree) bool {
	return bt.SameAs(Mirror(bt2))
}
 
func (bt *biTree) IsMirror(bt2 *biTree) bool {
	root := &biTree{&btNode{1, bt.Root, bt2.Root}}
	return root.IsSymmetry()
}
 
func (bt *biTree) IsSymmetry() bool {
	return Equal(bt.Root.Lchild, bt.Root.Rchild.InvertNodes())
}
 
func (bt *biTree) IsSymmetry2() bool {
	bt2 := Mirror(bt)
	return bt.SameAs(bt2)
}

另外:从leetcode题目中整理了50多个与二叉树相关的题目,对照看看还有多少没刷过?

到此这篇关于go语言算法题解二叉树的拷贝、镜像和对称的文章就介绍到这了,更多相关go之二叉树的拷贝、镜像和对称内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Go语言开发k8s之ConfigMap操作解析

    Go语言开发k8s之ConfigMap操作解析

    这篇文章主要为大家介绍了Go语言开发k8s之ConfigMap操作示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • Golang等多种语言转数组成字符串举例详解

    Golang等多种语言转数组成字符串举例详解

    今天写代码遇到数组转换成字符串操作,下面这篇文章主要给大家介绍了关于Golang等多种语言转数组成字符串的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-05-05
  • Golang语言学习拿捏Go反射示例教程

    Golang语言学习拿捏Go反射示例教程

    这篇文章主要为大家介绍了Golang语言中Go反射示例的教程,教你拿捏Go反射,再也不用被Go反射折磨,有需要的朋友可以共同学习参考下
    2021-11-11
  • 快速解决Golang Map 并发读写安全的问题

    快速解决Golang Map 并发读写安全的问题

    这篇文章主要介绍了快速解决Golang Map 并发读写安全的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • Kafka安装部署+go整合过程

    Kafka安装部署+go整合过程

    go语言是一种快速、分布式、并发编程的语言,它天生适合于处理高并发场景下的消息传递和处理,在本文中,我们将介绍Kafka安装部署+go整合过程,感兴趣的朋友一起看看吧
    2024-08-08
  • 详解Go中指针的原理与引用

    详解Go中指针的原理与引用

    在 Go 中,指针是强大而重要的功能,它允许开发人员直接处理内存地址并实现高效的数据操作,本文主要带大家了解下指针在 Go 中的工作原理以及对于编写高效、高性能代码的重要性,希望对大家有所帮助
    2023-09-09
  • Go语言命令行参数及cobra使用方法

    Go语言命令行参数及cobra使用方法

    Cobra是关于golang的一个命令行解析库,用它能够快速创建功能强大的 cli应用程序和命令行工具,本文主要介绍了Go语言命令行参数及cobra使用方法,感兴趣的可以了解一下
    2024-01-01
  • 关于go平滑重启库overseer实现原理详解

    关于go平滑重启库overseer实现原理详解

    这篇文章主要为大家详细介绍了关于go平滑重启库overseer实现原理,文中的示例代码讲解详细,具有一定的参考价值,有需要的小伙伴可以参考下
    2023-11-11
  • Golang 基础之函数使用(匿名递归闭包)实例详解

    Golang 基础之函数使用(匿名递归闭包)实例详解

    这篇文章主要为大家介绍了Golang 基础之函数使用(匿名递归闭包)实例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-10-10
  • axios gin的GET和POST请求实现示例

    axios gin的GET和POST请求实现示例

    这篇文章主要为大家介绍了axios gin的GET和POST请求实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-04-04

最新评论