Tensorflow的DataSet的使用详解

 更新时间:2023年01月15日 14:29:08   作者:月司  
本文主要介绍了Tensorflow的DataSet的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

Dataset类是TensorFlow非常流行的存储数据的格式。常用来作为输入输出。data模块主要的用途就是通过这种方法创建Dataset。

Dataset使用过程中的一些心得:

经常将自变量X数据以及target数据以元组的形式包裹,如db_train=tf.data.Dataset.from_tensor_slices((x_train,y_train)),创建Dataset。模型的fit()方法可以自动的解包。

Dataset能够包括比较灵活的类型,比如db_train=tf.data.Dataset.from_tensor_slices(({"features":features_train,"biomass_start":biomass_start_trarin},y_train))。因为数据最外部依然是最外部包裹,所以model的fit()依然可以自动的对x以及target解包。但由于dataset保存component是以原始数据的形式保存的。所以,fit()里的inputs一般是这个样子:

{'features': <tf.Tensor 'my_rnn/Cast_1:0' shape=(None, 5, 4) dtype=float32>, 'biomass_start': <tf.Tensor 'my_rnn/Cast:0' shape=(None, 1) dtype=float32>}

对于字典内部部分,需要手动的自己解包。这样的好处是,给我们自定义模型的结构提供的很大的遍历,输入一部分导入A网络,一部分导入不同的B网络。

Dataset作为模型的输入,需要设定batch()。而不在模型内设定batch。更加方便。然而Dataset作为迭代器,迭代完成后再次迭代数据,生成数据的前后数据是不一样的。需要注意。

batch的drop_remainder=True参数比较重要,只有设定为True,input接下来的层还能正确的识别shape

Dataset的常用属性

Dataset.element_spec

这个属性可以检测每一个元素中的component的类型。返回的是一个tf.TypeSpec对象。这个对象的结构跟元素的结构是一致的。

dataset1 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([4, 10]))

dataset1.element_spec
#TensorSpec(shape=(10,), dtype=tf.float32, name=None)
dataset2 = tf.data.Dataset.from_tensor_slices(
   (tf.random.uniform([4]),
    tf.random.uniform([4, 100], maxval=100, dtype=tf.int32)))

dataset2.element_spec
# 标量和向量
# (TensorSpec(shape=(), dtype=tf.float32, name=None),
#TensorSpec(shape=(100,), dtype=tf.int32, name=None))
dataset = tf.data.Dataset.from_tensor_slices(([1, 2], [3, 4], [5, 6]))
dataset.element_spec 
#(TensorSpec(shape=(), dtype=tf.int32, name=None),
# TensorSpec(shape=(), dtype=tf.int32, name=None),
# TensorSpec(shape=(), dtype=tf.int32, name=None))

# 注意这里是字典类型
dataset = tf.data.Dataset.from_tensor_slices({"a": [1, 2], "b": [3, 4]})
dataset.element_spec
#{'a': TensorSpec(shape=(), dtype=tf.int32, name=None),
# 'b': TensorSpec(shape=(), dtype=tf.int32, name=None)}

Dataset的常用方法

apply方法

对dataset进行转换。

dataset = tf.data.Dataset.range(100)
def dataset_fn(ds):
  return ds.filter(lambda x: x < 5)
dataset = dataset.apply(dataset_fn)
list(dataset.as_numpy_iterator())

as_numpy_iterator

dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
for element in dataset.as_numpy_iterator():
  print(element)

这个在dataset比较常用。就是将dataset变成迭代器,将所有元素都变成numy对象输出

shuffle

shuffle(
    buffer_size, seed=None, reshuffle_each_iteration=None, name=None
)

参数:

  • buffer_size:缓冲区大小
  • seed:随机种子
  • reshuffle_each_iteration:bool. 如果为真,表示每次迭代时数据集完成后都应该是进行伪随机重新洗牌的。控制每个epoch的洗牌顺序是否不同。

这个方法用来随机打乱数据集的元素顺序。数据集用buffer_size元素填充一个缓冲区,然后从这个缓冲区随机取样元素,用新元素替换选中的元素。例如,如果您的数据集包含10,000个元素,但是buffer_size被设置为1,000,那么shuffle将首先从缓冲区中的前1,000个元素中选择一个随机元素。一旦一个元素被选中,它在缓冲区中的空间就会被下一个(比如第1001个)元素替换,从而保持这个1,000元素缓冲区。为了实现完美的洗牌,需要一个大于或等于数据集完整大小的缓冲区。

dataset = tf.data.Dataset.range(3)
# 每个每个epoch重新洗牌
dataset = dataset.shuffle(3, reshuffle_each_iteration=True)
list(dataset.as_numpy_iterator())
# [1, 0, 2]
list(dataset.as_numpy_iterator())
# [1, 2, 0]
dataset = tf.data.Dataset.range(3)
# 每个每个epoch不重新洗牌
dataset = dataset.shuffle(3, reshuffle_each_iteration=False)
list(dataset.as_numpy_iterator())
# [1, 0, 2]
list(dataset.as_numpy_iterator())
# [1, 0, 2]

batch

batch(
    batch_size,
    drop_remainder=False,
    num_parallel_calls=None,
    deterministic=None,
    name=None
)

参数:

  • batch_size: 批处理大小
  • drop_remainder:是否删除最后一个短batch。==这个比较重要,只有设定为Ture,model才能正确的判断其输入的shape。==这也比较合理,指定为Falsel,因为谁也不知道后面是不是有一个比较短的batch,只有第一维是None,才能提高程序的稳定性。
  • num_parallel_calls:并行计算的数量。不指定会顺序执行。如果有 tf.data.AUTOTUNE,会自动动态的制定这个值。
  • deterministic:bool. 指定了num_parallel_calls,才有效。如果设置为False,则允许转换产生无序元素,以牺牲确定性来换取性能。如果不指定,tf.data.Options.deterministic控制这个行为(默认为True)
  • name: 标识符

这个方法经常使用,将dataset进行批处理化。因为数据集比较大的时候,一下子完全进行训练占用大量的内存。所以用分批处理。输出的元素增加了一个额外的维度,就是batch维,shape是batch的size.

batch支持一个drop_remainder=True关键字,为真意味着,最后一个batch的size如果小于我们指定值,就会被舍弃。

之所以要删掉最后一个短的batch,是因为如果我们的项目依赖这个batch的size,那最后一个batch不等长,可能会出错。

import tensorflow as tf
from tensorflow.python.data import Dataset

dataset = tf.data.Dataset.range(8)
dataset = dataset.batch(3)
print(list(dataset.as_numpy_iterator()))
# 通过这个看到这个elem也已经是分批了
for elem in dataset:
    print(elem)

# tf.Tensor([0 1 2], shape=(3,), dtype=int64)
# tf.Tensor([3 4 5], shape=(3,), dtype=int64)
# tf.Tensor([6 7], shape=(2,), dtype=int64)

for elem in dataset.as_numpy_iterator():
    print(elem)

# [0 1 2]
# [3 4 5]
# [6 7]
dataset = tf.data.Dataset.range(8)
# drop_remainder舍掉最后一个长度不够的batch
dataset = dataset.batch(3, drop_remainder=True)
list(dataset.as_numpy_iterator())

一般情况下,shuffle跟batch是连续使用的,实现随机读取并批量处理数据:dataset.shuffle(buffer_size).batch(batchsize)

不能对已经batch的dataset进行连续的batch操作,其batchsize不会改变,而是生成了新的异常数据

unbatch

unbatch(
    name=None
)

这里是将Batchdataset这样的dataset分割为一个个元素,元素的格式跟定义时的格式是一样的。而且,这里固定的是对第1个维度进行split操作,且生成shape[0]个元素。

reduce方法

reduce(
    initial_state, reduce_func, name=None
)

将输入数据集简化为一个元素。 reduce_func作用于dataset中每一个元素,输出其dataset的聚合信息。

参数initial_state代表进行reduce之前的初始状态。reduce_func要接收old_state, input_element两个参数,然后生成新的状态newstate。old_state和new_state的结构要一致。

dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1])
print(dataset.reduce(0, lambda state, value: state + value).numpy())
# 22

dataset不支持tf.split属性,也不能直接把dataset给切分为训练集和测试集。

到此这篇关于Tensorflow的DataSet的使用详解的文章就介绍到这了,更多相关Tensorflow DataSet内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python 如何利用pandas 和 matplotlib绘制柱状图

    Python 如何利用pandas 和 matplotlib绘制柱状图

    Python 中的 pandas 和 matplotlib 库提供了丰富的功能,可以帮助你轻松地绘制各种类型的图表,本文将介绍如何使用这两个库,绘制一个店铺销售数量的柱状图,并添加各种元素,如数据标签、图例、网格线等,感兴趣的朋友一起看看吧
    2023-10-10
  • 基于Python实现人脸识别相似度对比功能

    基于Python实现人脸识别相似度对比功能

    人脸识别技术是一种通过计算机对人脸图像进行分析和处理,从而实现自动识别和辨认人脸的技术,随着计算机视觉和模式识别领域的快速发展,人脸识别技术取得了长足的进步,本文给大家介绍了基于Python实现人脸识别相似度对比功能,感兴趣的朋友可以参考下
    2024-01-01
  • 在pycharm中使用pipenv创建虚拟环境和安装django的详细教程

    在pycharm中使用pipenv创建虚拟环境和安装django的详细教程

    这篇文章主要介绍了在pycharm中使用pipenv来创建虚拟环境和安装django的详细教程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-11-11
  • python网络编程实例简析

    python网络编程实例简析

    这篇文章主要介绍了python网络编程,有不错的借鉴价值,需要的朋友可以参考下
    2014-09-09
  • 浅谈pytorch torch.backends.cudnn设置作用

    浅谈pytorch torch.backends.cudnn设置作用

    今天小编就为大家分享一篇浅谈pytorch torch.backends.cudnn设置作用,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • Pytorch实现各种2d卷积示例

    Pytorch实现各种2d卷积示例

    今天小编就为大家分享一篇Pytorch实现各种2d卷积示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python实现Excel表格转HTML

    Python实现Excel表格转HTML

    Excel工作簿是常用的表格格式,广泛用于组织、分析及展示数据,这篇文章主要为大家详细介绍了如何使用Python将Excel工作簿或工作表转换为HTML文件,需要的可以参考下
    2024-03-03
  • 解决Pytorch训练过程中loss不下降的问题

    解决Pytorch训练过程中loss不下降的问题

    今天小编就为大家分享一篇解决Pytorch训练过程中loss不下降的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • python+requests+unittest API接口测试实例(详解)

    python+requests+unittest API接口测试实例(详解)

    下面小编就为大家带来一篇python+requests+unittest API接口测试实例(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • pyqt5 键盘监听按下enter 就登陆的实例

    pyqt5 键盘监听按下enter 就登陆的实例

    今天小编就为大家分享一篇pyqt5 键盘监听按下enter 就登陆的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06

最新评论