pandas创建DataFrame对象失败的解决方法

 更新时间:2023年01月17日 15:49:48   作者:无 羡ღ  
本文主要介绍了pandas创建DataFrame对象失败的解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

报错代码

粉丝群一个小伙伴想pandas创建DataFrame对象,但是发生了报错(当时他心里瞬间凉了一大截,跑来找我求助,然后顺利帮助他解决了,顺便记录一下希望可以帮助到更多遇到这个bug不会解决的小伙伴),报错代码如下:

import pandas as pd

data = {'name': ['a', 'b'],
        'Height': [140, 150, 160, 170],
        'Weight': [40, 50, 60, 70]}
df = pd.DataFrame(data, index=list('abcd'))
print(df)

报错信息截图如下所示:

在这里插入图片描述

报错翻译

报错信息翻译如下

值错误:传递值的形状为(2,3),索引表示(4,3)

报错原因

传递创建DataFrame的值和索引对不上,小伙伴们按下面正确的方法创建即可!!!

解决方法

每一个列表的长度都要相同

import pandas as pd

data = {'name': ['a', 'b','c','d'],
        'Height': [155, 160, 175, 180],
        'Weight': [50, 48, 52, 65]}
df = pd.DataFrame(data, index=list('abcd'))
print(df)

运行结果:

在这里插入图片描述

创建DataFrame对象的四种方法

DataFrame 构造方法如下:

pandas.DataFrame( data, index, columns, dtype, copy)

参数说明:

  • data:一组数据(ndarray、series, map, lists, dict 等类型)。
  • index:索引值,或者可以称为行标签。
  • columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
  • dtype:数据类型。
  • copy:拷贝数据,默认为 False。

1. list列表构建DataFrame

1)通过单列表创建

>>> import pandas as pd
>>>
>>> data = [0, 1, 2, 3, 4, 5]
>>> df = pd.DataFrame(data)
>>> print(df)
   0
0  0
1  1
2  2
3  3
4  4
5  5
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)通过嵌套列表创建

>>> import pandas as pd
>>>
>>> data = [['小明', 20], ['小红', 10]]
>>> df = pd.DataFrame(data, columns=['name', 'age'], dtype=float)
sys:1: FutureWarning: Could not cast to float64, falling back to object. This behavior is deprecated. In a future version, when a dtype is passed to 'DataFrame', either all columns will be cast to that dtype, or a TypeError will be raised
>>> print(df)
  name   age
0   小明  20.0
1   小红  10.0
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

3)列表中嵌套字典(字典的键被用作列名,缺失则赋值为NaN):

>>> import pandas as pd
>>>
>>> data = [{'A': 1, 'B': 2}, {'A': 3, 'B': 4, 'C': 5}]
>>> df = pd.DataFrame(data)
>>> print(df)
   A  B    C
0  1  2  NaN
1  3  4  5.0
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2. dict字典构建DataFrame

使用 dict 创建,dict中列表的长度必须相同, 如果传递了index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。

1)普通创建:

>>> import pandas as pd
>>>
>>> data = {'name': ['小红', '小明', '小白'], 'age': [10, 20, 30]}
>>> df = pd.DataFrame(data)
>>> print(df)
  name  age
0   小红   10
1   小明   20
2   小白   30
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)设置index创建:

>>> import pandas as pd
>>>
>>> data = {'name': ['小红', '小明', '小白'], 'age': [10, 20, 30]}
>>> df = pd.DataFrame(data, index=['老三', '老二', '老大'])
>>> print(df)
   name  age
老三   小红   10
老二   小明   20
老大   小白   30
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

3. ndarray创建DataFrame

1)普通方式创建:

>>> import pandas as pd
>>> import numpy as np
>>>
>>> data = np.random.randn(3, 3)
>>> print(data)
[[-1.9332579   0.70876382 -0.44291914]
 [-0.26228642 -1.05200338  0.57390067]
 [-0.49433001  0.70472595 -0.50749279]]
>>> print(type(data))
<class 'numpy.ndarray'>
>>> df = pd.DataFrame(data)
>>> print(df)
          0         1         2
0 -1.933258  0.708764 -0.442919
1 -0.262286 -1.052003  0.573901
2 -0.494330  0.704726 -0.507493
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

2)设置列名创建:

>>> import pandas as pd
>>> import numpy as np
>>>
>>> data = np.random.randn(3, 3)
>>> print(data)
[[-0.22028147  0.62374794 -0.66210282]
 [-0.71785439 -1.21004547  1.15663811]
 [ 1.47843923  0.4385811   0.31931312]]
>>> print(type(data))
<class 'numpy.ndarray'>
>>> df = pd.DataFrame(data, columns=list("ABC"))
>>> print(df)
          A         B         C
0 -0.220281  0.623748 -0.662103
1 -0.717854 -1.210045  1.156638
2  1.478439  0.438581  0.319313
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

4. Series创建DataFrame

>>> import pandas as pd
>>>
>>> data = {'A': pd.Series(1, index=list(range(4)), dtype='float32'),
...         'B': pd.Series(2, index=list(range(4)), dtype='float32'),
...         'C': pd.Series(3, index=list(range(4)), dtype='float32')
...         }
>>> df = pd.DataFrame(data)
>>> print(df)
     A    B    C
0  1.0  2.0  3.0
1  1.0  2.0  3.0
2  1.0  2.0  3.0
3  1.0  2.0  3.0
>>> print(type(df))
<class 'pandas.core.frame.DataFrame'>

帮忙解决

到此这篇关于pandas创建DataFrame对象失败的解决方法的文章就介绍到这了,更多相关pandas创建DataFrame对象失败内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 一小时学会TensorFlow2之Fashion Mnist

    一小时学会TensorFlow2之Fashion Mnist

    这篇文章主要介绍了TensorFlow2之Fashion Mnist,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • 关于Python Error标准异常的总结

    关于Python Error标准异常的总结

    这篇文章主要介绍了关于Python Error标准异常的总结,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • TensorFlow进阶学习定制模型和训练算法

    TensorFlow进阶学习定制模型和训练算法

    本文将为你提供关于 TensorFlow 的中级知识,你将学习如何通过子类化构建自定义的神经网络层,以及如何自定义训练算法,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-07-07
  • python使用 HTMLTestRunner.py生成测试报告

    python使用 HTMLTestRunner.py生成测试报告

    这篇文章主要介绍了python使用 HTMLTestRunner.py生成测试报告 ,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-10-10
  • python调用win32接口进行截图的示例

    python调用win32接口进行截图的示例

    这篇文章主要介绍了python调用win32接口进行截图的示例,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-11-11
  • Pytorch实现网络部分层的固定不进行回传更新问题及思路详解

    Pytorch实现网络部分层的固定不进行回传更新问题及思路详解

    这篇文章主要介绍了Pytorch实现网络部分层的固定不进行回传更新,实现思路就是利用tensor的requires_grad,每一个tensor都有自己的requires_grad成员,值只能为True和False,具体内容详情跟随小编一起看看吧
    2021-08-08
  • python使用wxPython打开并播放wav文件的方法

    python使用wxPython打开并播放wav文件的方法

    这篇文章主要介绍了python使用wxPython打开并播放wav文件的方法,涉及Python操作音频文件的相关技巧,需要的朋友可以参考下
    2015-04-04
  • Python django搭建layui提交表单,表格,图标的实例

    Python django搭建layui提交表单,表格,图标的实例

    今天小编就为大家分享一篇Python django搭建layui提交表单,表格,图标的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11
  • python字符串替换示例

    python字符串替换示例

    这篇文章主要介绍了python字符串替换示例,需要的朋友可以参考下
    2014-04-04
  • Pytest 自动化测试框架的使用

    Pytest 自动化测试框架的使用

    本文主要介绍了Pytest 自动化测试框架的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03

最新评论