Numpy 数组索引的实现

 更新时间:2023年01月18日 16:30:45   作者:岳来  
本文主要介绍了Numpy 数组索引的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

数组索引是指使用方括号([])来索引数组值,numpy提供了比常规的python序列更多的索引工具。除了按整数和切片索引之外,数组可以由整数数组索引、布尔索引及花式索引。下面逐一学习。

一、整数索引

这种机制有助于基于 N 维索引来获取数组中任意元素。 每个整数数组表示该维度的下标值。 当索引的元素个数就是目标ndarray的维度时,会变得相当直接。

import numpy as np
>>> s = np.arange(27).reshape(3,3,3)
>>> s
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> s[1]
array([[ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17]])
>>> s[1][1]
array([12, 13, 14])
>>> s[1][1][1]
13

二、切片索引

原理:切片操作是指抽取数组的一部分元素生成新数组。对 python 列表进行切片操作得到的数组是原数组的副本,而对 Numpy 数据进行切片操作得到的数组则是指向相同缓冲区的视图。如果想抽取(或查看)数组的一部分,必须使用切片语法,也就是,把几个用冒号( start:stop:step )隔开的数字置于方括号内。为了更好地理解切片语法,还应该了解不明确指明起始和结束位置的情况。如省去第一个数字,numpy 会认为第一个数字是0;如省去第二个 数字,numpy 则会认为第二个数字是数组的大索引值;如省去后一个数字,它将会被理解为1,也就是抽取所有元素而不再考虑间隔。

2.1、一维数组切片

同python 中list 切片

>>> s1 = np.array([3, 8, 6, 9, 0])
>>> s1
array([3, 8, 6, 9, 0])
>>> s1[3]
9
>>> s1[1:3]
array([8, 6])
>>> s1[-1]
0
>>> s1[2:]
array([6, 9, 0])
>>> s1[:4]
array([3, 8, 6, 9])
>>> s1[:]
array([3, 8, 6, 9, 0])

2.2、多维数组切片

>>> s2 = np.arange(12).reshape(3,4)
>>> s2
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> s2[1]
array([4, 5, 6, 7])
>>> s2[1][:1]
array([4])
>>> s2[1][:3]
array([4, 5, 6])

三、整数数组索引

数组作为索引的一大优势,便是可以将索引得到的结果组织成自己想要的形状。
输出结果的shape与索引数组的shape相同,而输出中各个元素的取值,便是由各个索引数组对应位置的值作为index索引得到。

3.1、 一维数组的整数数组索引

>>> x = np.arange(10,1,-1)
>>> x
array([10,  9,  8,  7,  6,  5,  4,  3,  2])
>>> x[np.array([3, 3, 1, 8])]
array([7, 7, 9, 2])
>>> x[np.array([[0,1][2,3]])]
array([[10,  9],
       [ 8,  7]])

3.2、多维数组的整数数组索引

>>> a = np.arange(15).reshape(3,5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a[np.array([0,2])] # 获取数组的第0行和第2行
array([[ 0,  1,  2,  3,  4],
       [10, 11, 12, 13, 14]])
>>> a[np.array([0,2]),np.array([1,3])]  # 获取数组第0行的第二个元素和第2行的第四个元素
array([ 1, 13])
>>> a[np.array([1,2])]
array([[ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
# 获取数组a[np.array([[0,2])] 的第一行的第二个元素和第二行的第四个元素...
>>> a[np.array([[0,2],[1,2]]),np.array([[1,3],[0,2]])]
array([[ 1, 13],
       [ 5, 12]])

每一个索引数组单独控制一个维度。例如对于 a[np.array([[0,2],[1,2]]),np.array([[1,3],[0,2]])],此时np.array([[0,2],[1,2]])控制输出的对应位置的行索引,np.array([[1,3],[0,2]])]控制输出的对应位置的列索引。行列索引组织在一起,便可以得到输出的每个位置的索引。

具体地,对于a[np.array([[0,2],[1,2]]),np.array([[1,3],[0,2]])],
由于np.array([[0,2],[1,2]])的shape为(2, 2),因此输出是一个(2,2)的矩阵。
在左上位置,行索引为0,列索引为1,值为1;
在右上位置,行索引为2,列索引为3,值为13;
在左下位置,行索引为0,列索引为1,值为5;
在右下位置,行索引为2,列索引为2, 值为12。
因此输出的矩阵即为,array([[1, 13],[5, 12]])。

充分利用"广播"机制,以及对于维度数量的省略,使得以数组作为索引的方式有更加灵活的应用,例如:

>>> a = np.arange(15).reshape(3,5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a[np.array([0,2]),3]
array([ 3, 13])
>>> a[np.array([0,2])]
array([[ 0,  1,  2,  3,  4],
       [10, 11, 12, 13, 14]])

在上例中,a[np.array([0,2]),3] 便可以广播为 a[np.array([0,2]),np.array([3,3])],从而化为我们熟悉的形式。而 a[np.array([0,2])] 通过省略一个维度,达到索引该维度全体数据的效果。

四、布尔索引

bool数组可以通过直接指出保留的值(True)与舍弃的值(False),来构建输出的数组。
bool数组的shape需要与被索引的数组(的前若干个维度)shape严格对齐。

>>> a = np.arange(15).reshape(3,5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> b = a > 10
>>> b
array([[False, False, False, False, False],
       [False, False, False, False, False],
       [False,  True,  True,  True,  True]])
>>> a[b]
array([11, 12, 13, 14])

使用bool 值获取数组元素

>>> a = np.arange(15).reshape(3,5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a[np.array([True])]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: boolean index did not match indexed array along dimension 0; dimension is 3 but corresponding boolean dimension is 1
>>> a[np.array([True, False])]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: boolean index did not match indexed array along dimension 0; dimension is 3 but corresponding boolean dimension is 2
>>> a[np.array([True, False,False])]
array([[0, 1, 2, 3, 4]])
>>> a[np.array([False, False,False])]
array([], shape=(0, 5), dtype=int64)
>>> a[np.array([False, False,True])]
array([[10, 11, 12, 13, 14]])
>>> a[np.array([True, True,True])]
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a[np.array([False, False,True]),np.array([True,False,True,False,True])]
array([10, 12, 14])

五、花式索引

花式索引指的是利用整数数组进行索引。
花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。
对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素,如果目标是二维数组,那么就是对应下标的行。
花式索引跟切片不一样,它总是将数据复制到新数组中。

>>> a = np.arange(12)**2    
>>> a
array([  0,   1,   4,   9,  16,  25,  36,  49,  64,  81, 100, 121])
>>> i = np.array( [ 1,1,3,8,5 ] )
>>> i
array([1, 1, 3, 8, 5])
>>> a[i]
array([ 1,  1,  9, 64, 25])
>>> j = np.array( [ [ 3, 4], [ 9, 7 ] ] )
>>> j
array([[3, 4],
       [9, 7]])
>>> a[j]
array([[ 9, 16],
       [81, 49]])

当被索引的数组是多维数组时,将按照它的第一轴进行索引的

>>> p = np.arange(27).reshape(3,3,3)
>>> p
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])
>>> l = np.array([[0, 2, 1],[1,2,1]])
>>> p[l]
array([[[[ 0,  1,  2],
         [ 3,  4,  5],
         [ 6,  7,  8]],

        [[18, 19, 20],
         [21, 22, 23],
         [24, 25, 26]],

        [[ 9, 10, 11],
         [12, 13, 14],
         [15, 16, 17]]],


       [[[ 9, 10, 11],
         [12, 13, 14],
         [15, 16, 17]],

        [[18, 19, 20],
         [21, 22, 23],
         [24, 25, 26]],

        [[ 9, 10, 11],
         [12, 13, 14],
         [15, 16, 17]]]])
>>> c = np.array([0,0,0])
>>> p[c]
array([[[0, 1, 2],
        [3, 4, 5],
        [6, 7, 8]],

       [[0, 1, 2],
        [3, 4, 5],
        [6, 7, 8]],

       [[0, 1, 2],
        [3, 4, 5],
        [6, 7, 8]]])

参考文档
1、https://blog.csdn.net/qq_45759562/article/details/109249685
2、https://zhuanlan.zhihu.com/p/427216184
3、http://t.zoukankan.com/lavender1221-p-12651442.html
4、https://www.runoob.com/numpy/numpy-advanced-indexing.html

到此这篇关于Numpy 数组索引的实现的文章就介绍到这了,更多相关Numpy 数组索引内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 关于python xlwings模块用法详解

    关于python xlwings模块用法详解

    xlwings是一个用于在Excel和Python之间进行交互的库,它允许您使用Python操作Excel文件,包括读取和写入数据,运行宏,设置格式等等,我们可以使用xlwings来处理Excel文件中的数据,执行各种操作,所以本文小编就给大家python xlwings模块用法
    2023-09-09
  • Pandas使用分隔符或正则表达式将字符串拆分为多列

    Pandas使用分隔符或正则表达式将字符串拆分为多列

    本文主要介绍了Pandas使用分隔符或正则表达式将字符串拆分为多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Python办公自动化之自动化文本翻译详解

    Python办公自动化之自动化文本翻译详解

    这篇文章主要为大家详细介绍了Python办公自动化中自动化文本翻译的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2024-01-01
  • 简介Python中用于处理字符串的center()方法

    简介Python中用于处理字符串的center()方法

    这篇文章主要介绍了简介Python中用于处理字符串的center()方法,是Python入门中的基础知识,需要的朋友可以参考下
    2015-05-05
  • python实现梯度下降求解逻辑回归

    python实现梯度下降求解逻辑回归

    这篇文章主要为大家详细介绍了python实现梯度下降求解逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-07-07
  • Python计算两个矩形重合面积代码实例

    Python计算两个矩形重合面积代码实例

    这篇文章主要介绍了Python 实现两个矩形重合面积代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • python中的super如何使用

    python中的super如何使用

    这篇文章主要介绍了python中的super,python中的super,名为超类,可以简单的理解为执行父类的__init__函数,本文就着重看下super的具体作用,需要的朋友可以参考下
    2022-03-03
  • 如何利用Python拟合函数曲线详解

    如何利用Python拟合函数曲线详解

    在实际项目中,往往有这样的需求:对采集到的数据进行数据处理(曲线拟合),再计算出一些想要的参数,比如峰值/dip值/周期等等,下面这篇文章主要给大家介绍了关于如何利用Python拟合函数曲线的相关资料,需要的朋友可以参考下
    2022-04-04
  • python计算牛顿迭代多项式实例分析

    python计算牛顿迭代多项式实例分析

    这篇文章主要介绍了python计算牛顿迭代多项式的方法,涉及Python数学运算的相关技巧,需要的朋友可以参考下
    2015-05-05
  • Python实现本地缓存的几种方法小结

    Python实现本地缓存的几种方法小结

    缓存是一种常见的技术,用于存储重复请求的结果,Python 作为一种灵活的编程语言,提供了多种实现本地缓存的方法,本文将探讨 Python 中实现本地缓存的几种策略,并提供具体的代码示例,感兴趣的小伙伴跟着小编一起来看看吧
    2024-07-07

最新评论