Python实现监控内存使用情况和代码执行时间

 更新时间:2023年01月28日 09:42:30   作者:deephub  
我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?在开发过程中,我很确定我们大多数人都会想知道这一点。本文总结了一些方法来监控 Python 代码的时间和内存使用情况,希望对大家有所帮助

我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?”

在开发过程中,我很确定我们大多数人都会想知道这一点,而且通常情况下存在开发空间。在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。

本文将介绍4种方法,前3种方法提供时间信息,第4个方法可以获得内存使用情况。

  • time 模块
  • %%time 魔法命令
  • line_profiler
  • memory_profiler

time 模块

这是计算代码运行所需时间的最简单、最直接(但需要手动开发)的方法。他的逻辑也很简单:记录代码运行之前和之后的时间,计算时间之间的差异。这可以实现如下:

importtime
 
 start_time=time.time()
 result=5+2
 end_time=time.time()
 
 print('Time taken = {} sec'.format(end_time-start_time))

下面的例子显示了for循环和列表推导式在时间上的差异:

importtime
 
 # for loop vs. list comp
 list_comp_start_time=time.time()
 result= [iforiinrange(0,1000000)]
 list_comp_end_time=time.time()
 print('Time taken for list comp = {} sec'.format(list_comp_end_time-list_comp_start_time))
 
 result=[]
 for_loop_start_time=time.time()
 foriinrange(0,1000000):
     result.append(i)
 for_loop_end_time=time.time()
 print('Time taken for for-loop = {} sec'.format(for_loop_end_time-for_loop_start_time))
 
 list_comp_time=list_comp_end_time-list_comp_start_time
 for_loop_time=for_loop_end_time-for_loop_start_time
 print('Difference = {} %'.format((for_loop_time-list_comp_time)/list_comp_time*100))

我们都知道for会慢一些

Time taken for list comp = 0.05843973159790039 sec
 Time taken for for-loop = 0.06774497032165527 sec
 Difference = 15.922795107582594 %

%%time 魔法命令

魔法命令是IPython内核中内置的方便命令,可以方便地执行特定的任务。一般情况下都实在jupyter notebook种使用。

在单元格的开头添加%%time ,单元格执行完成后,会输出单元格执行所花费的时间。

%%time
 defconvert_cms(cm, unit='m'):
     '''
     Function to convert cm to m or feet
     '''
     ifunit=='m':
         returncm/100
     returncm/30.48
 
 convert_cms(1000)

结果如下:

CPU times: user 24 µs, sys: 1 µs, total: 25 µs
 Wall time: 28.1 µs
 
 Out[8]: 10.0

这里的CPU times是CPU处理代码所花费的实际时间,Wall time是事件经过的真实时间,在方法入口和方法出口之间的时间。

line_profiler

前两个方法只提供执行该方法所需的总时间。通过时间分析器我们可以获得函数中每一个代码的运行时间。

这里我们需要使用line_profiler包。使用pip install line_profiler。

importline_profiler
 
 defconvert_cms(cm, unit='m'):
     '''
     Function to convert cm to m or feet
     '''
     ifunit=='m':
         returncm/100
     returncm/30.48
 
 # Load the profiler
 %load_extline_profiler
 
 # Use the profiler's magic to call the method
 %lprun-fconvert_cmsconvert_cms(1000, 'f')

输出结果如下:

Timer unit: 1e-06 s
 
 Total time: 4e-06 s
 File: /var/folders/y_/ff7_m0c146ddrr_mctd4vpkh0000gn/T/ipykernel_22452/382784489.py
 Function: convert_cms at line 1
 
 Line #      Hits         Time  Per Hit   % Time  Line Contents
 ==============================================================
      1                                           def convert_cms(cm, unit='m'):
      2                                               '''
      3                                               Function to convert cm to m or feet
      4                                               '''
      5         1          2.0      2.0     50.0      if unit == 'm':
      6                                                   return cm/100
      7         1          2.0      2.0     50.0      return cm/30.48

可以看到line_profiler提供了每行代码所花费时间的详细信息。

  • Line Contents :运行的代码
  • Hits:行被执行的次数
  • Time:所花费的总时间(即命中次数x每次命中次数)
  • Per Hit:一次执行花费的时间,也就是说 Time = Hits X Per Hit
  • % Time:占总时间的比例

可以看到,每一行代码都详细的分析了时间,这对于我们分析时间相当的有帮助。

memory_profiler

与line_profiler类似,memory_profiler提供代码的逐行内存使用情况。

要安装它需要使用pip install memory_profiler。我们这里监视convert_cms_f函数的内存使用情况

from conversions import convert_cms_f
 import memory_profiler
 
 %load_ext memory_profiler
 
 %mprun -f convert_cms_f convert_cms_f(1000, 'f')

convert_cms_f函数在单独的文件中定义,然后导入。结果如下:

Line #    Mem usage    Increment  Occurrences   Line Contents
 =============================================================
      1     63.7 MiB     63.7 MiB           1   def convert_cms_f(cm, unit='m'):
      2                                             '''
      3                                             Function to convert cm to m or feet
      4                                             '''
      5     63.7 MiB      0.0 MiB           1       if unit == 'm':
      6                                                 return cm/100
      7     63.7 MiB      0.0 MiB           1       return cm/30.48

memory_profiler 提供对每行代码内存使用情况的详细了解。

这里的1 MiB (MebiByte) 几乎等于 1MB。1 MiB = 1.048576 1MB

但是memory_profiler 也有一些缺点:它通过查询操作系统内存,所以结果可能与 python 解释器略有不同,如果在会话中多次运行 %mprun,可能会注意到增量列报告所有代码行为 0.0 MiB。这是因为魔法命令的限制导致的。

虽然memory_profiler有一些问题,但是它就使我们能够清楚地了解内存使用情况,对于开发来说是一个非常好用的工具

总结

虽然Python并不是一个以执行效率见长的语言,但是在某些特殊情况下这些命令对我们还是非常有帮助的。

以上就是Python实现监控内存使用情况和代码执行时间的详细内容,更多关于Python监控内存的资料请关注脚本之家其它相关文章!

相关文章

  • Python装饰器代码详解

    Python装饰器代码详解

    这篇文章主要介绍了python 一篇文章搞懂装饰器所有用法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-10-10
  • 提升Python编程水平必不可少的重构技巧

    提升Python编程水平必不可少的重构技巧

    在Python中,编写可读性强且Pythonic的代码是至关重要的,重构技巧是指通过调整代码结构和风格,使其更符合Python的惯例和标准,从而提高代码的可读性、简洁性和可维护性,本文将深入探讨八项重构技巧,帮助您编写更Pythonic的代码
    2024-01-01
  • Python实现调度算法代码详解

    Python实现调度算法代码详解

    这篇文章主要介绍了Python实现调度场算法代码详解,具有一定参考价值,需要的朋友可以了解下。
    2017-12-12
  • Python实现的一个自动售饮料程序代码分享

    Python实现的一个自动售饮料程序代码分享

    这篇文章主要介绍了Python实现的一个自动售饮料程序代码分享,就是用python实现的生活中一种投币式自动售饮料机的内部程序判断代码,需要的朋友可以参考下
    2014-08-08
  • python读取并绘制nc数据的保姆级教程

    python读取并绘制nc数据的保姆级教程

    其实目前很多数据以nc格式存储,这篇文章主要给大家介绍了关于python读取并绘制nc数据的保姆级教程,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-05-05
  • Python中单元测试的快速入门指南

    Python中单元测试的快速入门指南

    在这篇文章中,我们会深入探讨Python单元测试的各个方面,包括它的基本概念、基础知识、实践方法、高级话题,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-07-07
  • Python从入门到精通之Hash函数的使用详解

    Python从入门到精通之Hash函数的使用详解

    Python提供了强大而灵活的Hash函数,用于在各种应用中实现数据存储、数据校验、加密等功能,下面将从入门到精通介绍Python中Hash函数的使用,感兴趣的可以了解一下
    2023-08-08
  • 基于Python List的赋值方法

    基于Python List的赋值方法

    今天小编就为大家分享一篇基于Python List的赋值方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • Python源码学习之PyType_Type和PyBaseObject_Type详解

    Python源码学习之PyType_Type和PyBaseObject_Type详解

    今天给大家带来的是关于Python源码的相关知识学习,文章围绕着PyType_Type和PyBaseObject_Type展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • Python加载带有注释的Json文件实例

    Python加载带有注释的Json文件实例

    今天小编就为大家分享一篇Python加载带有注释的Json文件实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05

最新评论