浅谈Python实时检测CPU和GPU的功耗

 更新时间:2023年01月28日 09:40:53   作者:小锋学长生活大爆炸  
本文主要介绍了浅谈Python实时检测CPU和GPU的功耗,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前言

相关一些检测工具挺多的,比如powertop、powerstat、s-tui等。但如何通过代码的方式来实时检测,是个麻烦的问题。通过许久的搜索和自己的摸索,发现了可以检测CPU和GPU功耗的方法。如果有什么不对,或有更好的方法,欢迎评论留言!

文末附完整功耗分析的示例代码

GPU功耗检测方法

如果是常规的工具,可以使用官方的NVML。但这里需要Python控制,所以使用了对应的封装:pynvml。

先安装:

pip install pynvml

关于这个库,网上的使用教程挺多的。这里直接给出简单的示例代码:

import pynvml
pynvml.nvmlInit()
 
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
powerusage = pynvml.nvmlDeviceGetPowerUsage(handle) / 1000

这个方法获取的值,跟使用“nvidia-smi”指令得到的是一样的。

附赠一个来自网上的获取更详细信息的函数:

def get_sensor_values():
    """
    get Sensor values
    :return:
    """
    values = list()
    # get gpu driver version
    version = pynvml.nvmlSystemGetDriverVersion()
    values.append("GPU_device_driver_version:" + version.decode())
    gpucount = pynvml.nvmlDeviceGetCount()  # 显示有几块GPU
    for gpu_id in range(gpucount):
        handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
        name = pynvml.nvmlDeviceGetName(handle).decode()
        meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
        # print(meminfo.total)  # 显卡总的显存大小
        gpu_id = str(gpu_id)
        values.append("GPU " + gpu_id + " " + name + " 总共显存大小:" + str(common.bytes2human(meminfo.total)))
        # print(meminfo.used)  # 显存使用大小
        values.append("GPU " + gpu_id + " " + name + " 显存使用大小:" + str(common.bytes2human(meminfo.used)))
        # print(meminfo.free)  # 显卡剩余显存大小
        values.append("GPU " + gpu_id + " " + name + " 剩余显存大小:" + str(common.bytes2human(meminfo.free)))
        values.append("GPU " + gpu_id + " " + name + " 剩余显存比例:" + str(int((meminfo.free / meminfo.total) * 100)))
 
        utilization = pynvml.nvmlDeviceGetUtilizationRates(handle)
        # print(utilization.gpu)  # gpu利用率
        values.append("GPU " + gpu_id + " " + name + " GPU利用率:" + str(utilization.gpu))
 
        powerusage = pynvml.nvmlDeviceGetPowerUsage(handle)
        # print(powerusage / 1000) # 当前功耗, 原始单位是mWa
        values.append("GPU " + gpu_id + " " + name + " 当前功耗(W):" + str(powerusage / 1000))
 
        # 当前gpu power capacity
        # pynvml.nvmlDeviceGetEnforcedPowerLimit(handle)
 
        # 通过以下方法可以获取到gpu的温度,暂时采用ipmi sdr获取gpu的温度,此处暂不处理
        # temp = pynvml.nvmlDeviceGetTemperature(handle,0)
    print('\n'.join(values))
    return values

CPU功耗检测方法

这个没有找到开源可以直接用的库。但经过搜索,发现大家都在用的s-tui工具是开源的!通过查看源码,发现他是有获取CPU功耗部分的代码,所以就参考他的源码写了一下。

先安装:

sudo apt install s-tui
pip install s-tui

先直接运行工具看一下效果(不使用sudo是不会出来Power的):

sudo s-tui

 说明这个工具确实能获取到CPU的功耗。其中package就是2个CPU,dram是内存条功耗(一般不准,可以不用)。

直接给出简单的示例代码:

from s_tui.sources.rapl_power_source import RaplPowerSource
 
source.update()
summary = dict(source.get_sensors_summary())
 
cpu_power_total = str(sum(list(map(float, [summary[key] for key in summary.keys() if key.startswith('package')]))))

不过注意!由于需要sudo权限,所以运行这个py文件时候,也需要sudo方式,比如:

sudo python demo.py

sudo的困扰与解决

上面提到,由于必须要sudo方式,但sudo python就换了运行脚本的环境了呀,这个比较棘手。后来想了个方法,曲线救国一下。通过sudo运行一个脚本,并开启socket监听;而我们自己真正的脚本,在需要获取CPU功耗时候,连接一下socket就行。

为什么这里使用socket而不是http呢?因为socket更高效一点!

我们写一个“power_listener.py”来监听:

from s_tui.sources.rapl_power_source import RaplPowerSource
import socket
import json
 
def output_to_terminal(source):
    results = {}
    if source.get_is_available():
        source.update()
        source_name = source.get_source_name()
        results[source_name] = source.get_sensors_summary()
    for key, value in results.items():
        print(str(key) + ": ")
        for skey, svalue in value.items():
            print(str(skey) + ": " + str(svalue) + ", ")
 
 
source = RaplPowerSource()
# output_to_terminal(source)
 
s = socket.socket()
host = socket.gethostname()
port = 8888
s.bind((host, port))
s.listen(5)
print("等待客户端连接...")
while True:
    c, addr = s.accept()
    source.update()
    summary = dict(source.get_sensors_summary())
    #msg = json.dumps(summary)
    # package表示CPU,dram表示内存(一般不准)
    power_total = str(sum(list(map(float, [summary[key] for key in summary.keys() if key.startswith('package')]))))
    print(f'发送给{addr}:{power_total}')
    c.send(power_total.encode('utf-8'))
    c.close()                # 关闭连接

因此,在需要获取CPU功耗时候,只需要:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostname()
port = 8888
s.connect((host, port))
msg = s.recv(1024)
s.close()
power_usage_cpu = float(msg.decode('utf-8'))

完整功耗分析示例代码

提供一个我自己编写和使用的功耗分析代码,仅供参考。(注意上面的power_listener.py需要运行着)

import cv2
import socket
import sys
import threading
import json
import statistics
from psutil import _common as common
import pynvml
pynvml.nvmlInit()
 
class Timer: 
    def __init__(self, name = '', is_verbose = False):
        self._name = name 
        self._is_verbose = is_verbose
        self._is_paused = False 
        self._start_time = None 
        self._accumulated = 0 
        self._elapsed = 0         
        self.start()
 
    def start(self):
        self._accumulated = 0         
        self._start_time = cv2.getTickCount()
 
    def pause(self): 
        now_time = cv2.getTickCount()
        self._accumulated += (now_time - self._start_time)/cv2.getTickFrequency() 
        self._is_paused = True   
 
    def resume(self): 
        if self._is_paused: # considered only if paused 
            self._start_time = cv2.getTickCount()
            self._is_paused = False                      
 
    def elapsed(self):
        if self._is_paused:
            self._elapsed = self._accumulated
        else:
            now = cv2.getTickCount()
            self._elapsed = self._accumulated + (now - self._start_time)/cv2.getTickFrequency()        
        if self._is_verbose is True:      
            name =  self._name
            if self._is_paused:
                name += ' [paused]'
            message = 'Timer::' + name + ' - elapsed: ' + str(self._elapsed) 
            timer_print(message)
        return self._elapsed   
 
class PowerUsage:
    '''
    demo:
        power_usage = PowerUsage()
        power_usage.analyze_start()
        time.sleep(2)
        time_used, power_usage_gpu, power_usage_cpu = power_usage.analyze_end()
        print(time_used)
        print(power_usage_gpu)
        print(power_usage_cpu)
    '''
    def __init__(self):
        self.start_analyze = False
        self.power_usage_gpu_values = list()
        self.power_usage_cpu_values = list()
        self.thread = None
        self.timer = Timer(name='GpuPowerUsage', is_verbose=False)
 
    def analyze_start(self, gpu_id=0, delay=0.1):
        handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id)
        def start():
            self.power_usage_gpu_values.clear()
            self.power_usage_cpu_values.clear()
            self.start_analyze = True
            self.timer.start()
            while self.start_analyze:
                powerusage = pynvml.nvmlDeviceGetPowerUsage(handle)
                self.power_usage_gpu_values.append(powerusage/1000)
 
                s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
                host = socket.gethostname()
                port = 8888
                s.connect((host, port))
                msg = s.recv(1024)
                s.close()
                self.power_usage_cpu_values.append(float(msg.decode('utf-8')))
 
                time.sleep(delay)
        self.thread = threading.Thread(target=start, daemon=True)
        self.thread.start()
 
    def analyze_end(self, mean=True):
        self.start_analyze = False
        while self.thread and self.thread.isAlive():
            time.sleep(0.01)
        time_used = self.timer.elapsed()
        self.thread = None
        power_usage_gpu = statistics.mean(self.power_usage_gpu_values) if mean else self.power_usage_gpu_values
        power_usage_cpu = statistics.mean(self.power_usage_cpu_values) if mean else self.power_usage_cpu_values
        return time_used, power_usage_gpu, power_usage_cpu
 
 
power_usage = PowerUsage()
def power_usage_api(func, note=''):
    @wraps(func)
    def wrapper(*args, **kwargs):
        power_usage.analyze_start()
        result = func(*args, **kwargs)
        print(f'{note}{power_usage.analyze_end()}')
        return result
    return wrapper
 
def power_usage_api2(note=''):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            power_usage.analyze_start()
            result = func(*args, **kwargs)
            print(f'{note}{power_usage.analyze_end()}')
            return result
        return wrapper
    return decorator

用法示例:

power_usage = PowerUsage()
power_usage.analyze_start()
# ----------------------
# xxx 某一段待分析的代码
# 这里以sleep表示运行时长
time.sleep(2)
# ----------------------
time_used, power_usage_gpu, power_usage_cpu = power_usage.analyze_end()
print(f'time_used: {time_used}')
print(f'power_usage_gpu: {power_usage_gpu}')
print(f'power_usage_cpu: {power_usage_cpu}')

 到此这篇关于浅谈Python实时检测CPU和GPU的功耗的文章就介绍到这了,更多相关Python CPU和GPU功耗内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django定时任务Django-crontab的使用详解

    Django定时任务Django-crontab的使用详解

    测试平台执行测试用例时,可以借助jenkins之类的CI/CD工具,也可以使用定时任务crontab,作为测试开发工程师,我们可能没有权限去操作服务器,那么我们就只能使用django-crontab,在指定时间循环执行测试用例,对定时任务Django-crontab的使用感兴趣的朋友一起看看吧
    2022-07-07
  • python3爬虫之设计签名小程序

    python3爬虫之设计签名小程序

    这篇文章主要为大家详细介绍了python3爬虫之写为朋友设计签名的小程序,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • 解决Python 中JSONDecodeError: Expecting value: line 1 column 1 (char 0)错误

    解决Python 中JSONDecodeError: Expecting value:&n

    这篇文章主要介绍了解决Python 中JSONDecodeError: Expecting value: line 1 column 1 (char 0)错误问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-03-03
  • python实现斗地主分牌洗牌

    python实现斗地主分牌洗牌

    这篇文章主要为大家详细介绍了python实现斗地主分牌洗牌,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-06-06
  • Python 模拟员工信息数据库操作的实例

    Python 模拟员工信息数据库操作的实例

    下面小编就为大家带来一篇Python 模拟员工信息数据库操作的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • python3连接kafka模块pykafka生产者简单封装代码

    python3连接kafka模块pykafka生产者简单封装代码

    今天小编就为大家分享一篇python3连接kafka模块pykafka生产者简单封装代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python常见格式化字符串方法小结【百分号与format方法】

    Python常见格式化字符串方法小结【百分号与format方法】

    这篇文章主要介绍了Python常见格式化字符串方法,结合实例形式分析了百分号方法和format函数进行字符串格式化的具体使用技巧,需要的朋友可以参考下
    2016-09-09
  • 对django2.0 关联表的必填on_delete参数的含义解析

    对django2.0 关联表的必填on_delete参数的含义解析

    今天小编就为大家分享一篇对django2.0 关联表的必填on_delete参数的含义解析,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • 基于Python实现地标景点识别功能

    基于Python实现地标景点识别功能

    地标景点识别是一种基于计算机视觉技术的应用,旨在通过对图像进行分析和处理,自动识别出图片中的地标景点,本文将介绍地标景点识别的背景和原理,并使用Python编程语言来实现一个简单的地标景点识别系统,感兴趣的朋友可以参考下
    2024-01-01
  • Python实现统计文章阅读量的方法详解

    Python实现统计文章阅读量的方法详解

    这篇文章主要为大家详细介绍了如何溧阳Python语言实现统计文章阅读量的功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-02-02

最新评论