Python实现在Excel中绘制可视化大屏的方法详解

 更新时间:2023年01月29日 15:56:57   作者:俊欣  
今天小编来给大家分享如何在Excel文档当中来绘制可视化图表,并且制作一个可视化大屏。文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下

大家新年好哇,今天小编来给大家分享如何在Excel文档当中来绘制可视化图表,并且制作一个可视化大屏,非常的容易,这里我们会用到openpyxl模块,那么首先第一步便是调用该模块来读取Excel文件,代码如下

# 读取Excel文档并且指定工作表的名称
file_name = 'Bike_Sales_Playground.xlsx'
df = pd.read_excel(file_name,sheet_name='bike_buyers')

当然为了保险起见,我们这里还是拷贝一份源数据,并且新建一个新的工作表,代码如下

# 新建一张工作表
with pd.ExcelWriter(file_name,#文档的名称
                  engine='openpyxl',#调用模块的名称
                  mode='a',#添加的模式
                 if_sheet_exists="replace" #如果已经存在,就替换掉
                 ) as writer:
df.to_excel(writer, sheet_name='Working_Sheet',index = False)# 设置Index为False

# 从新的工作表当中来读取数据
df = pd.read_excel(file_name,sheet_name='Working_Sheet')

数据清洗

下一步我们进行数据的清洗,例如去掉重复值、针对一些数值做一些替换,代码如下

# 去掉重复值
df.drop_duplicates(keep='first', inplace=True, ignore_index=False)
    
# 针对婚姻状况这一列,“已婚”替换成“M”,“单身”替换成“S”
df['Marital Status'] = df['Marital Status'].replace('M','Married').replace('S','Single')
    
# 针对性别这一列,“男性”替换成“F”,而“女性”替换成“M”
df['Gender'] = df['Gender'].replace('F','Female').replace('M','Male')

# 查看表格的前5行
df.head()

# 年龄数值的处理
df['Age brackets'] = df['Age'].apply(lambda x: 'Less than 30' if x<=30 else('Greater than 55' if x>55 else '31 to 55'))

# 通勤距离的数值的替换
df['Commute Distance'] = df['Commute Distance'].replace('10+ Miles','More than 10 Miles')

output

      ID Marital Status  Gender  ...  Age  Purchased Bike     Age brackets
0  12496        Married  Female  ...   42              No         31 to 55
1  24107        Married    Male  ...   43              No         31 to 55
2  14177        Married    Male  ...   60              No  Greater than 55
3  24381         Single    Male  ...   41             Yes         31 to 55
4  25597         Single    Male  ...   36             Yes         31 to 55

绘制图表

接下来我们尝试来绘制几张可视化图表,下面所示的代码绘制的是柱状图,而绘制其余两张折线图的代码与下面是雷同的

# 透视表1
# 制作数据透视表
avg_gender_income_df = np.round(pd.pivot_table(bike_df,
               values = 'Income',
               index = ['Gender'],
               columns = ['Purchased Bike'],
               aggfunc = np.mean
              ),2)

# 将数据透视表放入Excel表格中,并且指定工作表
with pd.ExcelWriter(file_name,#工作表的名称
                    engine='openpyxl',#引擎的名称
                    mode='a',#Append模式
                   if_sheet_exists="replace" #如果已经存在,就替换掉
                   ) as writer:  
    
    avg_gender_income_df.to_excel(writer, sheet_name='Average_Gender_Income')

# 加载文档,并且指定工作表
wb = load_workbook(file_name)
sheet = wb['Average_Gender_Income']

# 创建柱状图
chart1 = BarChart()
chart1.type = "col"
chart1.style = 10
chart1.title = "基于性别与消费数据之下的平均收入"
chart1.y_axis.title = '性别'
chart1.x_axis.title = '收入'

# 将绘制出来的柱状图放在单元格中去
data1 = Reference(sheet, min_col=2, min_row=1, max_row=3, max_col=3)#Including Headers
cats1 = Reference(sheet, min_col=1, min_row=2, max_row=3)#Not including headers
chart1.add_data(data1, titles_from_data=True)
chart1.dataLabels = DataLabelList() 
chart1.dataLabels.showVal = True
chart1.set_categories(cats1)
chart1.shape = 4
sheet.add_chart(chart1, "A10")
wb.save(file_name)

output

生成可视化大屏

我们尝试将绘制完成的图表生成可视化大屏,代码如下

# 创建一个空的DataFrame表格
title_df = pd.DataFrame()

# 将结果放入至Excel文件当中去
with pd.ExcelWriter(file_name,#工作表的名称
                    engine='openpyxl',#引擎的名称
                    mode='a',#Append模式
                   if_sheet_exists="replace" #如果已经存在,就替换掉
                   ) as writer:  
    
    title_df.to_excel(writer, sheet_name='Dashboard')

# 加载文档,指定工作表是哪个
wb = load_workbook(file_name)
sheet = wb['Dashboard']
for x in range(1,22):
    sheet.merge_cells('A1:R4')
    
cell = sheet.cell(row=1, column=1)  
cell.value = 'Bike Sales Dashboard'  
cell.alignment = Alignment(horizontal='center', vertical='center')   
cell.font  = Font(b=True, color="F8F8F8",size = 46)
cell.fill = PatternFill("solid", fgColor="2591DB")

# 将绘制出来的图表放置到Excel文档中
sheet.add_chart(chart1,'A5')
sheet.add_chart(chart2,'J5')
chart3.width = 31
sheet.add_chart(chart3,'A20')
wb.save(file_name)

最后我们来看一下绘制出来的结果,如下所示

最后的最后,我们将上面所有的代码封装成一个函数,方便我们来调用,代码如下

import Bikes_Sales_Report_Automation as auto

# 填入文件的名称
auto.automate_excel_dashboard('Bike_Sales_Playground.xlsx')

到此这篇关于Python实现在Excel中绘制可视化大屏的方法详解的文章就介绍到这了,更多相关Python Excel绘制可视化大屏内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python sqlparse 解析库的基础使用过程解析

    Python sqlparse 解析库的基础使用过程解析

    sqlparse 是一个 Python 库,是一个用于 Python 的非验证 SQL 解析器, 用于解析 SQL 语句并提供一个简单的 API 来访问解析后的 SQL 结构,这篇文章主要介绍了Python sqlparse 解析库的基础使用,需要的朋友可以参考下
    2024-08-08
  • Python pypinyin注音库轻松丝滑实现汉字转换成拼音

    Python pypinyin注音库轻松丝滑实现汉字转换成拼音

    pypinyin 库,能像功夫熊猫那样,轻松、快捷地帮你把汉字转换成拼音,有了 pypinyin,不仅可以节省宝贵的时间,还可以更准确地展示中文字符的读音,使文化交流更为顺畅,本文带大家一起探索 pypinyin 库的魅力
    2024-01-01
  • 在python中利用numpy求解多项式以及多项式拟合的方法

    在python中利用numpy求解多项式以及多项式拟合的方法

    今天小编就为大家分享一篇在python中利用numpy求解多项式以及多项式拟合的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Flask 的路由Route详情

    Flask 的路由Route详情

    在上一篇Flask 入门Web 微框架Hello Flask中,我们用 Flask 框架写了一个 Hello Flask 应用程序,我们了解到 Flask 框架简洁高效、可以快速上手,接下来将对 Flask 框架的各项功能详细的介绍一下,本篇文章介绍的是 Flask 的路由(Route),需要的朋友可以参考一下
    2021-11-11
  • Scrapy基于Python构建强大网络爬虫框架实例探究

    Scrapy基于Python构建强大网络爬虫框架实例探究

    这篇文章主要为大家介绍了Scrapy基于Python构建强大网络爬虫框架实例探究,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • python 数据挖掘算法的过程详解

    python 数据挖掘算法的过程详解

    这篇文章主要介绍了python 数据挖掘算法,首先给大家介绍了数据挖掘的过程,基于sklearn主要的算法模型讲解,给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-02-02
  • Python中使用PyHook监听鼠标和键盘事件实例

    Python中使用PyHook监听鼠标和键盘事件实例

    这篇文章主要介绍了Python中使用PyHook监听鼠标和键盘事件实例,这个库依赖于另一个Python库PyWin32,并且只能运行在Windows平台,需要的朋友可以参考下
    2014-07-07
  • 使用python模块plotdigitizer抠取论文图片中的数据实例详解

    使用python模块plotdigitizer抠取论文图片中的数据实例详解

    这篇文章主要介绍了使用python模块plotdigitizer抠取论文图片中的数据,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03
  • Django实现单用户登录的方法示例

    Django实现单用户登录的方法示例

    这篇文章主要介绍了Django实现单用户登录的方法示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-03-03
  • 关于Python如何避免循环导入问题详解

    关于Python如何避免循环导入问题详解

    在大型的Python工程中,由于架构设计不当,可能会出现模块间相互引用的情况。下面这篇文章主要给大家介绍了关于如何避免Python的循环导入问题的相关资料,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-09-09

最新评论