Go语言实现的可读性更高的并发神库详解

 更新时间:2023年01月31日 09:11:35   作者:asong2020  
这篇文章主要为大家介绍了Go语言实现的可读性更高的并发神库详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

前言

前几天逛github发现了一个有趣的并发库-conc,其目标是:

  • 更难出现goroutine泄漏
  • 处理panic更友好
  • 并发代码可读性高

从简介上看主要封装功能如下:

  • waitGroup进行封装,避免了产生大量重复代码,并且也封装recover,安全性更高
  • 提供panics.Catcher封装recover逻辑,统一捕获panic,打印调用栈一些信息
  • 提供一个并发执行任务的worker池,可以控制并发度、goroutine可以进行复用,支持函数签名,同时提供了stream方法来保证结果有序
  • 提供ForEachmap方法优雅的处理切片

接下来就区分模块来介绍一下这个库;

仓库地址:github.com/sourcegraph…

WaitGroup的封装

Go语言标准库有提供sync.waitGroup控制等待goroutine,我们一般会写出如下代码:

func main(){
    var wg sync.WaitGroup
    for i:=0; i < 10; i++{
        wg.Add(1)
        go func() {
            defer wg.Done()
            defer func() {
                // recover panic
                err := recover()
                if err != nil {
                    fmt.Println(err)
                }
            }
            // do something
            handle()
        }
    }
    wg.Wait()
}

上述代码我们需要些一堆重复代码,并且需要单独在每一个func中处理recover逻辑,所以conc库对其进行了封装,代码简化如下:

func main() {
	wg := conc.NewWaitGroup()
	for i := 0; i &lt; 10; i++ {
		wg.Go(doSomething)
	}
	wg.Wait()
}
func doSomething() {
	fmt.Println("test")
}

conc库封装也比较简单,结构如下:

type WaitGroup struct {
	wg sync.WaitGroup
	pc panics.Catcher
}

其自己实现了Catcher类型对recover逻辑进行了封装,封装思路如下:

type Catcher struct {
	recovered atomic.Pointer[RecoveredPanic]
}

recovered是原子指针类型,RecoveredPanic是捕获的recover封装,封装了堆栈等信息:

type RecoveredPanic struct {
	// The original value of the panic.
	Value any
	// The caller list as returned by runtime.Callers when the panic was
	// recovered. Can be used to produce a more detailed stack information with
	// runtime.CallersFrames.
	Callers []uintptr
	// The formatted stacktrace from the goroutine where the panic was recovered.
	// Easier to use than Callers.
	Stack []byte
}

提供了Try方法执行方法,只会记录第一个panic的goroutine信息:

func (p *Catcher) Try(f func()) {
	defer p.tryRecover()
	f()
}
func (p *Catcher) tryRecover() {
	if val := recover(); val != nil {
		rp := NewRecoveredPanic(1, val)
        // 只会记录第一个panic的goroutine信息
		p.recovered.CompareAndSwap(nil, &amp;rp)
	}
}

提供了Repanic()方法用来重放捕获的panic:

func (p *Catcher) Repanic() {
	if val := p.Recovered(); val != nil {
		panic(val)
	}
}
func (p *Catcher) Recovered() *RecoveredPanic {
	return p.recovered.Load()
}

waitGroup对此也分别提供了Wait()WaitAndRecover()方法:

func (h *WaitGroup) Wait() {
	h.wg.Wait()
	// Propagate a panic if we caught one from a child goroutine.
	h.pc.Repanic()
}
func (h *WaitGroup) WaitAndRecover() *panics.RecoveredPanic {
	h.wg.Wait()
	// Return a recovered panic if we caught one from a child goroutine.
	return h.pc.Recovered()
}

wait方法只要有一个goroutine发生panic就会向上抛出panic,比较简单粗暴;

waitAndRecover方法只有有一个goroutine发生panic就会返回第一个recover的goroutine信息;

总结:conc库对waitGrouop的封装总体是比较不错的,可以减少重复的代码;

worker池

conc提供了几种类型的worker池:

  • ContextPool:可以传递context的pool,若有goroutine发生错误可以cancel其他goroutine
  • ErrorPool:通过参数可以控制只收集第一个error还是所有error
  • ResultContextPool:若有goroutine发生错误会cancel其他goroutine并且收集错误
  • RestultPool:收集work池中每个任务的执行结果,并不能保证顺序,保证顺序需要使用stream或者iter.map;

我们来看一个简单的例子:

import "github.com/sourcegraph/conc/pool"
func ExampleContextPool_WithCancelOnError() {
	p := pool.New().
		WithMaxGoroutines(4).
		WithContext(context.Background()).
		WithCancelOnError()
	for i := 0; i < 3; i++ {
		i := i
		p.Go(func(ctx context.Context) error {
			if i == 2 {
				return errors.New("I will cancel all other tasks!")
			}
			<-ctx.Done()
			return nil
		})
	}
	err := p.Wait()
	fmt.Println(err)
	// Output:
	// I will cancel all other tasks!
}

在创建pool时有如下方法可以调用:

  • p.WithMaxGoroutines()配置pool中goroutine的最大数量
  • p.WithErrors:配置pool中的task是否返回error
  • p.WithContext(ctx):配置pool中运行的task当遇到第一个error要取消
  • p.WithFirstError:配置pool中的task只返回第一个error
  • p.WithCollectErrored:配置pool的task收集所有error

pool的基础结构如下:

type Pool struct {
	handle   conc.WaitGroup
	limiter  limiter
	tasks    chan func()
	initOnce sync.Once
}

limiter是控制器,用chan来控制goroutine的数量:

type limiter chan struct{}
func (l limiter) limit() int {
	return cap(l)
}
func (l limiter) release() {
	if l != nil {
		&lt;-l
	}
}

pool的核心逻辑也比较简单,如果没有设置limiter,那么就看有没有空闲的worker,否则就创建一个新的worker,然后投递任务进去;

如果设置了limiter,达到了limiter worker数量上限,就把任务投递给空闲的worker,没有空闲就阻塞等着;

func (p *Pool) Go(f func()) {
	p.init()
	if p.limiter == nil {
		// 没有限制
		select {
		case p.tasks <- f:
			// A goroutine was available to handle the task.
		default:
			// No goroutine was available to handle the task.
			// Spawn a new one and send it the task.
			p.handle.Go(p.worker)
			p.tasks <- f
		}
	} else {
		select {
		case p.limiter <- struct{}{}:
			// If we are below our limit, spawn a new worker rather
			// than waiting for one to become available.
			p.handle.Go(p.worker)
			// We know there is at least one worker running, so wait
			// for it to become available. This ensures we never spawn
			// more workers than the number of tasks.
			p.tasks <- f
		case p.tasks <- f:
			// A worker is available and has accepted the task.
			return
		}
	}
}

这里work使用的是一个无缓冲的channel,这种复用方式很巧妙,如果goroutine执行很快避免创建过多的goroutine;

使用pool处理任务不能保证有序性,conc库又提供了Stream方法,返回结果可以保持顺序;

Stream

Steam的实现也是依赖于pool,在此基础上做了封装保证结果的顺序性,先看一个例子:

func ExampleStream() {
	times := []int{20, 52, 16, 45, 4, 80}
	stream := stream2.New()
	for _, millis := range times {
		dur := time.Duration(millis) * time.Millisecond
		stream.Go(func() stream2.Callback {
			time.Sleep(dur)
			// This will print in the order the tasks were submitted
			return func() { fmt.Println(dur) }
		})
	}
	stream.Wait()
	// Output:
	// 20ms
	// 52ms
	// 16ms
	// 45ms
	// 4ms
	// 80ms
}

stream的结构如下:

type Stream struct {
	pool             pool.Pool
	callbackerHandle conc.WaitGroup
	queue            chan callbackCh
	initOnce sync.Once
}

queue是一个channel类型,callbackCh也是channel类型 - chan func():

type callbackCh chan func()

在提交goroutine时按照顺序生成callbackCh传递结果:

func (s *Stream) Go(f Task) {
	s.init()
	// Get a channel from the cache.
	ch := getCh()
	// Queue the channel for the callbacker.
	s.queue <- ch
	// Submit the task for execution.
	s.pool.Go(func() {
		defer func() {
			// In the case of a panic from f, we don't want the callbacker to
			// starve waiting for a callback from this channel, so give it an
			// empty callback.
			if r := recover(); r != nil {
				ch <- func() {}
				panic(r)
			}
		}()
		// Run the task, sending its callback down this task's channel.
		callback := f()
		ch <- callback
	})
}
var callbackChPool = sync.Pool{
	New: func() any {
		return make(callbackCh, 1)
	},
}
func getCh() callbackCh {
	return callbackChPool.Get().(callbackCh)
}
func putCh(ch callbackCh) {
	callbackChPool.Put(ch)
}

ForEach和map

ForEach

conc库提供了ForEach方法可以优雅的并发处理切片,看一下官方的例子:

conc库使用泛型进行了封装,我们只需要关注handle代码即可,避免冗余代码,我们自己动手写一个例子:

func main() {
	input := []int{1, 2, 3, 4}
	iterator := iter.Iterator[int]{
		MaxGoroutines: len(input) / 2,
	}
	iterator.ForEach(input, func(v *int) {
		if *v%2 != 0 {
			*v = -1
		}
	})
	fmt.Println(input)
}

ForEach内部实现为Iterator结构及核心逻辑如下:

type Iterator[T any] struct {
	MaxGoroutines int
}
func (iter Iterator[T]) ForEachIdx(input []T, f func(int, *T)) {
	if iter.MaxGoroutines == 0 {
		// iter is a value receiver and is hence safe to mutate
		iter.MaxGoroutines = defaultMaxGoroutines()
	}
	numInput := len(input)
	if iter.MaxGoroutines > numInput {
		// No more concurrent tasks than the number of input items.
		iter.MaxGoroutines = numInput
	}
	var idx atomic.Int64
	// 通过atomic控制仅创建一个闭包
	task := func() {
		i := int(idx.Add(1) - 1)
		for ; i < numInput; i = int(idx.Add(1) - 1) {
			f(i, &input[i])
		}
	}
	var wg conc.WaitGroup
	for i := 0; i < iter.MaxGoroutines; i++ {
		wg.Go(task)
	}
	wg.Wait()
}

可以设置并发的goroutine数量,默认取的是GOMAXPROCS ,也可以自定义传参;

并发执行这块设计的很巧妙,仅创建了一个闭包,通过atomic控制idx,避免频繁触发GC;

map

conc库提供的map方法可以得到对切片中元素结果,官方例子:

使用map可以提高代码的可读性,并且减少了冗余代码,自己写个例子:

func main() {
	input := []int{1, 2, 3, 4}
	mapper := iter.Mapper[int, bool]{
		MaxGoroutines: len(input) / 2,
	}
	results := mapper.Map(input, func(v *int) bool { return *v%2 == 0 })
	fmt.Println(results)
	// Output:
	// [false true false true]
}

map的实现也依赖于Iterator,也是调用的ForEachIdx方法,区别于ForEach是记录处理结果;

总结

花了小半天时间看了一下这个库,很多设计点值得我们学习,总结一下我学习到的知识点:

  • conc.WatiGroup对Sync.WaitGroup进行了封装,对Add、Done、Recover进行了封装,提高了可读性,避免了冗余代码
  • ForEach、Map方法可以更优雅的并发处理切片,代码简洁易读,在实现上Iterator中的并发处理使用atomic来控制只创建一个闭包,避免了GC性能问题
  • pool是一个并发的协程队列,可以控制协程的数量,实现上也很巧妙,使用一个无缓冲的channel作为worker,如果goroutine执行速度快,避免了创建多个goroutine
  • stream是一个保证顺序的并发协程队列,实现上也很巧妙,使用sync.Pool在提交goroutine时控制顺序,值得我们学习;

以上就是Go语言实现的可读性更高的并发神库详解的详细内容,更多关于Go语言可读性并发库的资料请关注脚本之家其它相关文章!

相关文章

  • Go语言中工作池的原理与实现

    Go语言中工作池的原理与实现

    工作池是一种并发编程模式,它使用一组固定数量的工作线程来执行任务队列中的工作单元,本文将介绍工作池的工作原理,并通过代码示例演示其在实际应用中的用途,有需要的可以参考下
    2023-10-10
  • 一文了解Go 并发与并行

    一文了解Go 并发与并行

    并发性和并行性是是两个既有联系又有所区别的概念,本文主要介绍了Go并发与并行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-05-05
  • 完美解决beego 根目录不能访问静态文件的问题

    完美解决beego 根目录不能访问静态文件的问题

    下面小编就为大家带来一篇完美解决beego 根目录不能访问静态文件的问题。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • golang生成RSA公钥和密钥的实现方法

    golang生成RSA公钥和密钥的实现方法

    本文主要介绍了golang生成RSA公钥和密钥的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-08-08
  • 使用Go语言实现敏感词过滤功能

    使用Go语言实现敏感词过滤功能

    敏感词过滤,算是一个比较常见的功能,尤其是在内容、社交类应用中更是如此,本文介绍如何使用Go语言实现简单的敏感词过滤功能,文中通过代码示例介绍的非常详细,需要的朋友可以参考下
    2023-12-12
  • GoLang与Java各自生成grpc代码流程介绍

    GoLang与Java各自生成grpc代码流程介绍

    这篇文章主要介绍了GoLang与Java各自生成grpc代码流程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2023-03-03
  • 详解golang中 work与 module 的区别与联系

    详解golang中 work与 module 的区别与联系

    Go 模块通常由一个项目或库组成,并包含一组随后一起发布的 Go 包,Go 模块通过允许用户将项目代码放在他们选择的目录中并为每个模块指定依赖项的版本,解决了原始系统的许多问题,本文将给大家介绍一下golang中 work与 module 的区别与联系,需要的朋友可以参考下
    2023-09-09
  • golang中定时器cpu使用率高的现象详析

    golang中定时器cpu使用率高的现象详析

    这篇文章主要给大家介绍了关于golang中定时器cpu使用率高的现象的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧。
    2018-04-04
  • golang中json小谈之字符串转浮点数的操作

    golang中json小谈之字符串转浮点数的操作

    这篇文章主要介绍了golang中json小谈之字符串转浮点数的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • go并发编程sync.Cond使用场景及实现原理

    go并发编程sync.Cond使用场景及实现原理

    这篇文章主要为大家介绍了go并发编程sync.Cond使用场景及实现原理详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-08-08

最新评论