使用seaborn绘制强化学习中的图片问题
seaborn绘制强化学习中的图片
seaborn可以说是matplotlib的升级版,使用seaborn绘制折线图时参数数据可以传递ndarray或者pandas,方便又好看!
本篇用绘制强化学习中的rewards举例,实际上也可以用来机器学习中的loss曲线,原理类似。
从一个简单示例开始
import matplotlib.pyplot as plt import numpy as np import seaborn as sns # 导入模块 sns.set() # 设置美化参数,一般默认就好 rewards = np.array([0, 0.1,0,0.2,0.4,0.5,0.6,0.9,0.9,0.9]) plt.plot(rewards) plt.show()
如上首先导入seaborn模块,并设置美化参数(aesthetic parameters)sns.set()
,使用matplotlib.pyplot as plt
就可以绘制一个基本的图像:
使用sns.lineplot或者sns.relplot
实际上relplot包含lineplot和scatterplot,并通过kind
传参可以转换为lineplot,
relplot(kind="line")等价于lineplot relplot(kind="scatter")等价于scatterplot
然后再进行适当的调整并加上x,y轴的label,如下:
import matplotlib.pyplot as plt import numpy as np import seaborn as sns; sns.set() # 因为sns.set()一般不用改,可以在导入模块时顺便设置好 rewards = np.array([0, 0.1,0,0.2,0.4,0.5,0.6,0.9,0.9,0.9]) sns.lineplot(x=range(len(rewards)),y=rewards) # sns.relplot(x=range(len(rewards)),y=rewards,kind="line") # 与上面一行等价 plt.xlabel("episode") plt.ylabel("reward") plt.show()
最后呈现效果如下:
绘制rewards聚合图
当我们对同一实验作出多次得到一组rewards时,如下:
rewards1 = np.array([0, 0.1,0,0.2,0.4,0.5,0.6,0.9,0.9,0.9]) rewards2 = np.array([0, 0,0.1,0.4,0.5,0.5,0.55,0.8,0.9,1]) rewards=np.vstack((rewards1,rewards2)) # 合并成二维数组
我们希望绘制出聚合图,但是sns.lineplot
无法输入一维以上的数据,我们可以将它们全部转为一维,虽然有些难看:
import matplotlib.pyplot as plt import numpy as np import seaborn as sns; sns.set() # 因为sns.set()一般不用改,可以在导入模块时顺便设置好 rewards1 = np.array([0, 0.1,0,0.2,0.4,0.5,0.6,0.9,0.9,0.9]) rewards2 = np.array([0, 0,0.1,0.4,0.5,0.5,0.55,0.8,0.9,1]) rewards=np.concatenate((rewards1,rewards2)) # 合并数组 episode1=range(len(rewards1)) episode2=range(len(rewards2)) episode=np.concatenate((episode1,episode2)) sns.lineplot(x=episode,y=rewards) plt.xlabel("episode") plt.ylabel("reward") plt.show()
结果如图:
绘制出了带聚合阴影的图,实际上实际部分是seaborn默认对同一x轴的多个y值即rewards做了均值,阴影部分表示多组rewards的范围,可以使用sns.lineplot(x=episode,y=rewards,ci=None)
去掉。
使用pandas传参
上面都是用ndarray传参,这样一方面免不了与matplotlib.pyplot
混杂的成分比如plt.xlabel,另外绘制rewards聚合图,也比较麻烦。
既然使用pandas传参,就需要先把array转成DataFrame形式,如下:
import numpy as np import pandas as pd rewards1 = np.array([0, 0.1,0,0.2,0.4,0.5,0.6,0.9,0.9,0.9]) rewards2 = np.array([0, 0,0.1,0.4,0.5,0.5,0.55,0.8,0.9,1]) rewards=np.vstack((rewards1,rewards2)) # 合并数组 df = pd.DataFrame(rewards).melt(var_name='episode',value_name='reward') # 推荐这种转换方法 print(df)
推荐上述转化方法,这样无论rewards
多少维都不影响最终的绘图方式,其中melt
方法将所有维合并成一列,var_name='episode',value_name='reward'
则更改对应的列名,转化结果如下:
episode reward
0 0 0.0
1 0 0.1
2 0 0.0
3 0 0.2
4 0 0.4
5 0 0.5
6 0 0.6
7 0 0.9
8 0 0.9
9 0 0.9
下面完整绘图:
import seaborn as sns;sns.set() import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd rewards1 = np.array([0, 0.1,0,0.2,0.4,0.5,0.6,0.9,0.9,0.9]) rewards2 = np.array([0, 0,0.1,0.4,0.5,0.5,0.55,0.8,0.9,1]) rewards=np.vstack((rewards1,rewards2)) # 合并数组 df = pd.DataFrame(rewards).melt(var_name='episode',value_name='reward') sns.lineplot(x="episode", y="reward", data=df) plt.show()
注意这里的x,y不再传入数组,而是传入DataFrame中对应的列名,类似于python字典中的键
结果如下:
牛刀小试
最后绘制一个更为复杂的可以用于paper的绘制方法:
import seaborn as sns; sns.set() import matplotlib.pyplot as plt import numpy as np import pandas as pd def get_data(): '''获取数据 ''' basecond = np.array([[18, 20, 19, 18, 13, 4, 1],[20, 17, 12, 9, 3, 0, 0],[20, 20, 20, 12, 5, 3, 0]]) cond1 = np.array([[18, 19, 18, 19, 20, 15, 14],[19, 20, 18, 16, 20, 15, 9],[19, 20, 20, 20, 17, 10, 0]]) cond2 = np.array([[20, 20, 20, 20, 19, 17, 4],[20, 20, 20, 20, 20, 19, 7],[19, 20, 20, 19, 19, 15, 2]]) cond3 = np.array([[20, 20, 20, 20, 19, 17, 12],[18, 20, 19, 18, 13, 4, 1], [20, 19, 18, 17, 13, 2, 0]]) return basecond, cond1, cond2, cond3 data = get_data() label = ['algo1', 'algo2', 'algo3', 'algo4'] df=[] for i in range(len(data)): df.append(pd.DataFrame(data[i]).melt(var_name='episode',value_name='loss')) df[i]['algo']= label[i] df=pd.concat(df) # 合并 sns.lineplot(x="episode", y="loss", hue="algo", style="algo",data=df) plt.title("some loss") plt.show()
结果如下:
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
python 时间信息“2018-02-04 18:23:35“ 解析成字典形式的结果代码详解
本文是类方法给大家介绍如何将python 时间信息“2018-02-04 18:23:35“ 解析成字典形式的结果,需要的朋友可以参考下2018-04-04
最新评论