Postgresql源码分析returns setof函数oracle管道pipelined
引言
【功能】
- Oracle的return pipelined管道函数可以使一次返回的集合类型,变为 逐条返回pipe row(集合中的一条)给SQL层,大大减少内存的使用。
- Postgresql的return setof函数并不能起到降低内存使用的效果,return next 单条数据只起到了缓存的效果,并不会把数据逐条返回SQL层处理,没有降低内存的效果。
【代码】
- exec_stmt_return_next中的tupledesc从执行计划node中取出,返回值需要满足desc要求,缓存值也会按该desc保存。
- return next对rec类型和row类型处理的区别
- rec类型本质上就是tuple,数据和desc都以扩展形式存放在erh中。如果需要转换为tuple,有几个标准函数提供转换功能,且支持类型转换。【转换后调用tuplestore的标准接口缓存tuple】
- row类型本质上是一个虚拟行(由一组datum位置组成),row->varnos[i]指向某一个datum,如果想把row转换为tuple,需要用exec_eval_datum算出varnos指向的datum的值,然后组装成values和nulls数组,用heap_form_tuple构造。注意这种转换过程不会有类型转换,如果需要的desc和算出来的列类型对不上,返回空。成功【转换后调用tuplestore的标准接口缓存tuple】
- return next对var类型的处理:var看做单列tuple,按执行计划给的desc转换类型后构造tuple。【转换后调用tuplestore的标准接口缓存tuple】
【实用函数】
- 通用
- 类型转换:exec_cast_value(传入的值不能是eoh真实的头,使用前需要转成eoh存的1be头,1be指向真实头)
- 数组拼接minimaltuple:heap_form_minimal_tuple
- 有一个tuple和desc转换为另一个desc的tuple:convert_tuples_by_position、execute_attr_map_tuple
- tuplestore:
- 用values数组存tuple(用tuplestore_puttuple_common拼好后传tuple):tuplestore_putvalues
- 用HeapTuple存tuple(直接传tuple):tuplestore_puttuple
- 类型
- 根据类型id和mod找出desc:lookup_rowtype_tupdesc
- erh
- 从erh扩展类型拿到紧凑tuple:expanded_record_get_tuple
1 :管道函数是什么,应用于什么场景
oracle支持pipelined函数,可以在函数定义时指定RETURN 集合类型 PIPELINED 来说明当前函数是管道函数。
管道函数最大的作用就是可以使一次返回的集合类型,变为 逐条返回,大大减少内存的使用。
例如:嵌套表类型outrecset是函数f_trans的返回值,普通函数只能组装好嵌套表outrecset(全部缓存在内存),一次性返回。如果嵌套表内容较多,可能会占用较大的内存空间。
如果使用管道函数,可以通过pipe row(嵌套表中的一行)来代替return
语句,函数把嵌套表逐行返回给上层处理,无需缓存,降低内存使用。
ORACLE实例:
CREATE OR REPLACE PACKAGE refcur_pkg AUTHID DEFINER IS TYPE refcur_t IS REF CURSOR RETURN employees%ROWTYPE; TYPE outrec_typ IS RECORD ( var_num NUMBER(6), var_char1 VARCHAR2(30), var_char2 VARCHAR2(30) ); TYPE outrecset IS TABLE OF outrec_typ; FUNCTION f_trans (p refcur_t) RETURN outrecset PIPELINED; END refcur_pkg; / CREATE OR REPLACE PACKAGE BODY refcur_pkg IS FUNCTION f_trans (p refcur_t) RETURN outrecset PIPELINED IS out_rec outrec_typ; in_rec p%ROWTYPE; BEGIN LOOP FETCH p INTO in_rec; -- input row EXIT WHEN p%NOTFOUND; out_rec.var_num := in_rec.employee_id; out_rec.var_char1 := in_rec.first_name; out_rec.var_char2 := in_rec.last_name; PIPE ROW(out_rec); -- first transformed output row out_rec.var_char1 := in_rec.email; out_rec.var_char2 := in_rec.phone_number; PIPE ROW(out_rec); -- second transformed output row END LOOP; CLOSE p; RETURN; END f_trans; END refcur_pkg; / SELECT * FROM TABLE ( refcur_pkg.f_trans ( CURSOR (SELECT * FROM employees WHERE department_id = 60) ) );
在PG中,普通的return语句也是需要一次性返回数据,但PG应该是参考ORACLE实现了return next的功能,也希望逐条返回数据(PG没有集合类型,已普通类型为例):
drop function f1; create or replace function f1(in i int, out j int) returns setof int as $$ begin j := i+1; return next; j := i+2; return next; return; end$$ language plpgsql; select * from f1(42); j ---- 43 44
但在内核实现中,并不是逐条返回的,return next其实只起到了缓存数据的功能,总的数据集也是一次性返回SQL层的,和直接return没有区别(只有语法上的区别)。
所以PG的return setof函数并不能起到降低内存使用的效果。下面来分析具体过程。
2 return next实现
return next目前支持三类数据的返回,var、rec、rows return next也可以不加参数,返回值按out参数列表拼接
具体处理函数:exec_stmt_return_next
static int exec_stmt_return_next(PLpgSQL_execstate *estate, PLpgSQL_stmt_return_next *stmt) { TupleDesc tupdesc; int natts; HeapTuple tuple; MemoryContext oldcontext;
1 初始化tuple store
初始化总结:
1 初始化的过程就是在构造Tuplestorestate,主要动作:
- 给Tuplestorestate新的内存上下文ExecutorState
- 记录不能随机访问:eflags = EXEC_FLAG_REWIND
- 记录三个操作函数:copytup_heap、writetup_heap、readtup_heap
2 给estate->tuple_store_desc添加desc,desc来源:
- 从执行计划节点中node(Tuplestorestate)拿到后,传入ExecMakeTableFunctionResult
- ExecMakeTableFunctionResult组装ReturnSetInfo挂到fcinfo->resultinfo上
- plpgsql_exec_function时从fcinfo中拿出ReturnSetInfo取到desc
- plpgsql_estate_setup将取到的desc存入estate->rsi = rsi
#0 plpgsql_estate_setup (estate=0x7ffd81e2f850, func=0x2419028, rsi=0x7ffd81e2fb20, simple_eval_estate=0x0, simple_eval_resowner=0x0) at pl_exec.c:3972 #1 0x00007fe0a3992064 in plpgsql_exec_function (func=0x2419028, fcinfo=0x24da5a8, simple_eval_estate=0x0, simple_eval_resowner=0x0, procedure_resowner=0x0, atomic=true) at pl_exec.c:485 #2 0x00007fe0a39ac8f9 in plpgsql_call_handler (fcinfo=0x24da5a8) at pl_handler.c:277 #3 0x0000000000738829 in ExecMakeTableFunctionResult (setexpr=0x24e0b40, econtext=0x24e0a10, argContext=0x24da490, expectedDesc=0x24e1110, randomAccess=false) at execSRF.c:235 #4 0x0000000000753eed in FunctionNext (node=0x24e0800) at nodeFunctionscan.c:95 #5 0x000000000073a081 in ExecScanFetch (node=0x24e0800, accessMtd=0x753e3b <FunctionNext>, recheckMtd=0x754242 <FunctionRecheck>) at execScan.c:133 #6 0x000000000073a0f6 in ExecScan (node=0x24e0800, accessMtd=0x753e3b <FunctionNext>, recheckMtd=0x754242 <FunctionRecheck>) at execScan.c:182 #7 0x000000000075428c in ExecFunctionScan (pstate=0x24e0800) at nodeFunctionscan.c:270 #8 0x000000000073614e in ExecProcNodeFirst (node=0x24e0800) at execProcnode.c:464 #9 0x000000000072a08a in ExecProcNode (node=0x24e0800) at ../../../src/include/executor/executor.h:262 #10 0x000000000072cb80 in ExecutePlan (estate=0x24e05d8, planstate=0x24e0800, use_parallel_mode=false, operation=CMD_SELECT, sendTuples=true, numberTuples=0, direction=ForwardScanDirection, dest=0x24d5910, execute_once=true) at execMain.c:1632 #11 0x000000000072a6d1 in standard_ExecutorRun (queryDesc=0x23f1248, direction=ForwardScanDirection, count=0, execute_once=true) at execMain.c:364 #12 0x000000000072a50b in ExecutorRun (queryDesc=0x23f1248, direction=ForwardScanDirection, count=0, execute_once=true) at execMain.c:308 #13 0x0000000000997ba9 in PortalRunSelect (portal=0x2474a28, forward=true, count=0, dest=0x24d5910) at pquery.c:924 #14 0x0000000000997867 in PortalRun (portal=0x2474a28, count=9223372036854775807, isTopLevel=true, run_once=true, dest=0x24d5910, altdest=0x24d5910, qc=0x7ffd81e300b0) at pquery.c:768 #15 0x0000000000991408 in exec_simple_query (query_string=0x23c9518 "select * from f1(42);") at postgres.c:1238 #16 0x0000000000995a3e in PostgresMain (dbname=0x2400998 "postgres", username=0x23c5178 "mingjie") at postgres.c:4563 #17 0x00000000008d3cfe in BackendRun (port=0x23f7220) at postmaster.c:4396 #18 0x00000000008d3697 in BackendStartup (port=0x23f7220) at postmaster.c:4124 #19 0x00000000008d00b8 in ServerLoop () at postmaster.c:1791 #20 0x00000000008cf98a in PostmasterMain (argc=1, argv=0x23c3120) at postmaster.c:1463 #21 0x00000000007ada4b in main (argc=1, argv=0x23c3120) at main.c:200
分析:
if (estate->tuple_store == NULL) exec_init_tuple_store(estate); tupdesc = estate->tuple_store_desc; natts = tupdesc->natts; if (stmt->retvarno >= 0) { PLpgSQL_datum *retvar = estate->datums[stmt->retvarno]; switch (retvar->dtype) {
初始化函数exec_init_tuple_store
static void exec_init_tuple_store(PLpgSQL_execstate *estate) { ReturnSetInfo *rsi = estate->rsi; MemoryContext oldcxt; ResourceOwner oldowner; // 从"SPI Proc"切换到"ExecutorState" oldcxt = MemoryContextSwitchTo(estate->tuple_store_cxt); // 从“Portal”切换到"Portal" oldowner = CurrentResourceOwner; CurrentResourceOwner = estate->tuple_store_owner; // 进入tuplestore_begin_heap函数 estate->tuple_store = tuplestore_begin_heap(rsi->allowedModes & SFRM_Materialize_Random, false, work_mem); CurrentResourceOwner = oldowner; MemoryContextSwitchTo(oldcxt); // 给estate添加DESC,rsi->expectedDesc的来源? estate->tuple_store_desc = rsi->expectedDesc; }
进入tuplestore_begin_heap
Tuplestorestate * tuplestore_begin_heap(bool randomAccess, bool interXact, int maxKBytes) { // 输入false不允许随机访问、false、8192 Tuplestorestate *state; int eflags; // eflags = EXEC_FLAG_REWIND eflags = randomAccess ? (EXEC_FLAG_BACKWARD | EXEC_FLAG_REWIND) : (EXEC_FLAG_REWIND); // 进入tuple store模块开始初始化返回Tuplestorestate,注意他会直接拿当前的memcontext state = tuplestore_begin_common(eflags, interXact, maxKBytes); // 返回的Tuplestorestate状态: // state = {status = TSS_INMEM, eflags = 2, backward = false, interXact = false, // truncated = false, availMem = 8372200, allowedMem = 8388608, tuples = 0, // myfile = 0x0, context = "ExecutorState", resowner = "Portal", copytup = 0x0, // writetup = 0x0, readtup = 0x0, memtuples = 0x24f0d88, memtupdeleted = 0, // memtupcount = 0, memtupsize = 2048, growmemtuples = true, readptrs = 0x24e7a70, // activeptr = 0, readptrcount = 1, readptrsize = 8, writepos_file = 0,writepos_offset = 0} state->copytup = copytup_heap; state->writetup = writetup_heap; state->readtup = readtup_heap; return state; }
后面根据返回值的不同,进入几个分支。
在进入前,desc已经获取到了: tupdesc = estate->tuple_store_desc;
natts = tupdesc->natts;
场景一:return next返回var类型
case PLPGSQL_DTYPE_VAR: { PLpgSQL_var *var = (PLpgSQL_var *) retvar; Datum retval = var->value; bool isNull = var->isnull; Form_pg_attribute attr = TupleDescAttr(tupdesc, 0); if (natts != 1) ereport(ERROR, (errcode(ERRCODE_DATATYPE_MISMATCH), errmsg("wrong result type supplied in RETURN NEXT"))); // retval是一个eoh的头,后续处理需要一个1be的头(1be的data部分指向eoh) retval = MakeExpandedObjectReadOnly(retval, isNull, var->datatype->typlen); // 转成需要的类型 retval = exec_cast_value(estate, retval, &isNull, var->datatype->typoid, var->datatype->atttypmod, attr->atttypid, attr->atttypmod); tuplestore_putvalues(estate->tuple_store, tupdesc, &retval, &isNull); } break;
执行tuplestore_putvalues保存元组
void tuplestore_putvalues(Tuplestorestate *state, TupleDesc tdesc, Datum *values, bool *isnull) { MinimalTuple tuple; MemoryContext oldcxt = MemoryContextSwitchTo(state->context); tuple = heap_form_minimal_tuple(tdesc, values, isnull); // 记录使用了多少空间,修改state->availMem USEMEM(state, GetMemoryChunkSpace(tuple)); tuplestore_puttuple_common(state, (void *) tuple); MemoryContextSwitchTo(oldcxt); } static void tuplestore_puttuple_common(Tuplestorestate *state, void *tuple) { TSReadPointer *readptr; int i; ResourceOwner oldowner; state->tuples++; switch (state->status) {
内存态直接用数组缓存tuple,tuple使用的内存是在外层函数切换上下文申请的。
case TSS_INMEM: readptr = state->readptrs; for (i = 0; i < state->readptrcount; readptr++, i++) { if (readptr->eof_reached && i != state->activeptr) { readptr->eof_reached = false; readptr->current = state->memtupcount; } } if (state->memtupcount >= state->memtupsize - 1) { (void) grow_memtuples(state); } state->memtuples[state->memtupcount++] = tuple; if (state->memtupcount < state->memtupsize && !LACKMEM(state)) return; PrepareTempTablespaces(); oldowner = CurrentResourceOwner; CurrentResourceOwner = state->resowner; state->myfile = BufFileCreateTemp(state->interXact); CurrentResourceOwner = oldowner; state->backward = (state->eflags & EXEC_FLAG_BACKWARD) != 0; state->status = TSS_WRITEFILE; dumptuples(state); break; ...
场景二:return next返回record类型
case PLPGSQL_DTYPE_REC: { PLpgSQL_rec *rec = (PLpgSQL_rec *) retvar; TupleDesc rec_tupdesc; TupleConversionMap *tupmap;
拿到record:
{dtype = PLPGSQL_DTYPE_REC, dno = 1, refname = 0x24db608 "r", lineno = 3, isconst = false, notnull = false, default_val = 0x0, datatype = {typname='foo'}, rectypeid = 17117, firstfield = -1, erh = 0x2509708}
- 数据和desc都在erh中,列名在firstfield指向的位置。
- 数据类型在datatype中:foo
- 数据类型oid在rectypeid中:17117->foo
if (rec->erh == NULL) instantiate_empty_record_variable(estate, rec); if (ExpandedRecordIsEmpty(rec->erh)) deconstruct_expanded_record(rec->erh); // "SPI Proc"切到"ExprContext" oldcontext = MemoryContextSwitchTo(get_eval_mcontext(estate)); // return erh->er_tupdesc; rec_tupdesc = expanded_record_get_tupdesc(rec->erh); // 从保存的desc:rec_tupdesc转换到输出的desc:tupdesc,第一步:生成转换map tupmap = convert_tuples_by_position(rec_tupdesc, tupdesc, gettext_noop("wrong record type supplied in RETURN NEXT")); tuple = expanded_record_get_tuple(rec->erh); if (tupmap) // 从保存的desc:rec_tupdesc转换到输出的desc:tupdesc,第二步:用map生成转换后的元组 tuple = execute_attr_map_tuple(tuple, tupmap); // 缓存元组 tuplestore_puttuple(estate->tuple_store, tuple); MemoryContextSwitchTo(oldcontext); } break;
场景三:return next返回row类型
必须是两列以上的out参数,直接return next空,才会使用这段逻辑。
case PLPGSQL_DTYPE_ROW: { PLpgSQL_row *row = (PLpgSQL_row *) retvar; oldcontext = MemoryContextSwitchTo(get_eval_mcontext(estate)); // 必须严格匹配tupdesc的类型,对不上则转换失败 tuple = make_tuple_from_row(estate, row, tupdesc); if (tuple == NULL) ereport(ERROR,...) tuplestore_puttuple(estate->tuple_store, tuple); MemoryContextSwitchTo(oldcontext); } break; default: elog(ERROR, "unrecognized dtype: %d", retvar->dtype); break; } }
3 用例
drop function f1; create or replace function f1(in i int, out j int) returns setof int as $$ begin j := i+1; return next; j := i+2; return next; return; end$$ language plpgsql; select * from f1(42); ---- CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT); INSERT INTO foo VALUES (1, 2, 'three'); INSERT INTO foo VALUES (4, 5, 'six'); CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS $BODY$ DECLARE r foo%rowtype; BEGIN FOR r IN SELECT * FROM foo WHERE fooid > 0 LOOP -- can do some processing here RETURN NEXT r; -- return current row of SELECT END LOOP; RETURN; END; $BODY$ LANGUAGE plpgsql; SELECT * FROM get_all_foo(); -------- drop function f1(int); create function f1(in i int, out j int, out k text) returns setof record as $$ begin j := i+1; k := 'foo'; return next; j := j+1; k := 'foot'; return next; return; end$$ language plpgsql; select * from f1(42);
以上就是Postgresql源码分析returns setof函数oracle管道pipelined的详细内容,更多关于Postgresql returns setof函数的资料请关注脚本之家其它相关文章!
相关文章
解决sqoop从postgresql拉数据,报错TCP/IP连接的问题
这篇文章主要介绍了解决sqoop从postgresql拉数据,报错TCP/IP连接的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-12-12PostgreSQL 存储过程的进阶讲解(含游标、错误处理、自定义函数、事务)
PL/pgSQL 游标允许我们封装一个查询,然后每次处理结果集中的一条记录,这篇文章主要介绍了PostgreSQL 存储过程的进阶介绍(含游标、错误处理、自定义函数、事务),需要的朋友可以参考下2023-03-03PostgreSQL中ON CONFLICT的使用及一些扩展用法
Postgres ON CONFLICT是PostgreSQL数据库中的一个功能,用于处理插入或更新数据时的冲突情况,下面这篇文章主要给大家介绍了关于PostgreSQL中ON CONFLICT的使用及一些扩展用法的相关资料,需要的朋友可以参考下2024-06-06
最新评论