Python之二维正态分布采样置信椭圆绘制
更新时间:2023年02月01日 11:49:22 作者:犹有傲霜枝
这篇文章主要介绍了Python之二维正态分布采样置信椭圆绘制方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
二维正态分布采样后,绘制置信椭圆
假设二维正态分布表示为:
下图为两个二维高斯分布采样后的置信椭圆
和
每个二维高斯分布采样100个数据点,图片为:
代码如下
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt def make_ellipses(mean, cov, ax, confidence=5.991, alpha=0.3, color="blue", eigv=False, arrow_color_list=None): """ 多元正态分布 mean: 均值 cov: 协方差矩阵 ax: 画布的Axes对象 confidence: 置信椭圆置信率 # 置信区间, 95%: 5.991 99%: 9.21 90%: 4.605 alpha: 椭圆透明度 eigv: 是否画特征向量 arrow_color_list: 箭头颜色列表 """ lambda_, v = np.linalg.eig(cov) # 计算特征值lambda_和特征向量v # print "lambda: ", lambda_ # print "v: ", v # print "v[0, 0]: ", v[0, 0] sqrt_lambda = np.sqrt(np.abs(lambda_)) # 存在负的特征值, 无法开方,取绝对值 s = confidence width = 2 * np.sqrt(s) * sqrt_lambda[0] # 计算椭圆的两倍长轴 height = 2 * np.sqrt(s) * sqrt_lambda[1] # 计算椭圆的两倍短轴 angle = np.rad2deg(np.arccos(v[0, 0])) # 计算椭圆的旋转角度 ell = mpl.patches.Ellipse(xy=mean, width=width, height=height, angle=angle, color=color) # 绘制椭圆 ax.add_artist(ell) ell.set_alpha(alpha) # 是否画出特征向量 if eigv: # print "type(v): ", type(v) if arrow_color_list is None: arrow_color_list = [color for i in range(v.shape[0])] for i in range(v.shape[0]): v_i = v[:, i] scale_variable = np.sqrt(s) * sqrt_lambda[i] # 绘制箭头 """ ax.arrow(x, y, dx, dy, # (x, y)为箭头起始坐标,(dx, dy)为偏移量 width, # 箭头尾部线段宽度 length_includes_head, # 长度是否包含箭头 head_width, # 箭头宽度 head_length, # 箭头长度 color, # 箭头颜色 ) """ ax.arrow(mean[0], mean[1], scale_variable*v_i[0], scale_variable * v_i[1], width=0.05, length_includes_head=True, head_width=0.2, head_length=0.3, color=arrow_color_list[i]) # ax.annotate("", # xy=(mean[0] + lambda_[i] * v_i[0], mean[1] + lambda_[i] * v_i[1]), # xytext=(mean[0], mean[1]), # arrowprops=dict(arrowstyle="->", color=arrow_color_list[i])) # v, w = np.linalg.eigh(cov) # print "v: ", v # # angle = np.rad2deg(np.arccos(w)) # u = w[0] / np.linalg.norm(w[0]) # angle = np.arctan2(u[1], u[0]) # angle = 180 * angle / np.pi # s = 5.991 # 置信区间, 95%: 5.991 99%: 9.21 90%: 4.605 # v = 2.0 * np.sqrt(s) * np.sqrt(v) # ell = mpl.patches.Ellipse(xy=mean, width=v[0], height=v[1], angle=180 + angle, color="red") # ell.set_clip_box(ax.bbox) # ell.set_alpha(0.5) # ax.add_artist(ell) def plot_2D_gaussian_sampling(mean, cov, ax, data_num=100, confidence=5.991, color="blue", alpha=0.3, eigv=False): """ mean: 均值 cov: 协方差矩阵 ax: Axes对象 confidence: 置信椭圆的置信率 data_num: 散点采样数量 color: 颜色 alpha: 透明度 eigv: 是否画特征向量的箭头 """ if isinstance(mean, list) and len(mean) > 2: print "多元正态分布,多于2维" mean = mean[:2] cov_temp = [] for i in range(2): cov_temp.append(cov[i][:2]) cov = cov_temp elif isinstance(mean, np.ndarray) and mean.shape[0] > 2: mean = mean[:2] cov = cov[:2, :2] data = np.random.multivariate_normal(mean, cov, 100) x, y = data.T plt.scatter(x, y, s=10, c=color) make_ellipses(mean, cov, ax, confidence=confidence, color=color, alpha=alpha, eigv=eigv) def main(): # plt.figure("Multivariable Gaussian Distribution") plt.rcParams["figure.figsize"] = (8.0, 8.0) fig, ax = plt.subplots() ax.set_xlabel("x") ax.set_ylabel("y") print "ax:", ax mean = [4, 0] cov = [[1, 0.9], [0.9, 0.5]] plot_2D_gaussian_sampling(mean=mean, cov=cov, ax=ax, eigv=True, color="r") mean1 = [5, 2] cov1 = [[1, 0], [0, 1]] plot_2D_gaussian_sampling(mean=mean1, cov=cov1, ax=ax, eigv=True) plt.savefig("./get_pickle_data/pic/gaussian_covariance_matrix.png") plt.show() if __name__ == "__main__": main()
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
最新评论