一文带你深入了解Python中的二次移动平均法

 更新时间:2023年02月01日 17:06:14   作者:梦想橡皮擦  
二次移动平均法,也称为指数加权移动平均法,是一种用于平滑时间序列数据的算法。这篇文章主要通过示例来和大家聊聊二次移动平均法的使用,需要的可以了解一下

二次移动平均法逻辑

二次移动平均法是一种重要的数学工具,用于处理时间序列数据,它的主要目的是通过平滑序列中的噪音数据来更好地捕捉趋势。

具体实现:

  • 计算第一个二次移动平均数,这通常是简单移动平均数(SMA)。
  • 使用以下公式计算每个时间步的二次移动平均数:

EMAt​=α×yt​+(1−α)×EMAt−1​

其中EMAt表示时间步t的二次移动平均数,yt表示时间步t的数据点,α表示权重系数,它一般设置为2/(n+1),其中n表示窗口长度。

Python代码实现

下面是一个用 python 实现的二次移动平均法的代码示例:

def ema(data, window):
    alpha = 2 / (window + 1)
    ema = [data[0]]
    for i in range(1, len(data)):
        ema.append(alpha * data[i] + (1 - alpha) * ema[-1])
    return ema

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
window = 5
ema_data = ema(data, window)
print(ema_data)

运行代码,得到如下输出。

第二种实现二次移动平均法的方式

另一种写法是直接使用 NumPy 的函数 numpy.convolve() 实现二次移动平均法。具体如下:

import numpy as np

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
window = 5

def double_moving_average(data, window=2):
    return np.convolve(data, np.ones(window) / window, 'valid')

ema_data = double_moving_average(data, window)
print(ema_data)

这里的 data 变量表示输入的数据, window 变量表示窗口大小,这个代码实现了二次移动平均法的功能,可以得到移动平均值数组。

第三种卷积实现二次移动平均法

第三种方法是使用卷积,在 Python 中可以使用 Numpy 实现:

import numpy as np

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
window = 5

def moving_average_2(data, window=3):
    cumsum_vec = np.cumsum(np.insert(data, 0, 0))
    ma = (cumsum_vec[window:] - cumsum_vec[:-window]) / window
    return np.concatenate((np.zeros(window - 1), ma))

ema_data = moving_average_2(data, window)
print(ema_data)

这种方法将二次移动平均法转化为卷积的形式,使用 cumsum() 函数计算前缀和,然后通过切片的方式计算窗口内的平均值。

二次移动平均法的应用场景

数据平滑:可以通过二次移动平均法对时间序列数据进行平滑处理,去除其中的噪音和瞬时干扰。

趋势分析:可以通过对数据进行二次移动平均法处理,得到数据的趋势信息,用于趋势分析和预测。

市场分析:在股市分析中,二次移动平均法常被用于分析股票价格的趋势,判断买卖信号。

去除季节性:二次移动平均法可以用于去除季节性对数据的影响。

到此这篇关于一文带你深入了解Python中的二次移动平均法的文章就介绍到这了,更多相关Python二次移动平均法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 详解如何利用Python绘制迷宫小游戏

    详解如何利用Python绘制迷宫小游戏

    这篇文章主要为大家介绍了如何用Python制作一个迷宫游戏,文中的示例代码讲解详细,对大家更好的理解和学习python有一定帮助,感兴趣的朋友可以了解下
    2022-02-02
  • Python OpenCV阈值处理详解

    Python OpenCV阈值处理详解

    阈值处理是一种简单、有效的将图像划分为前景和背景的方法。图像分割通常用于根据对象的某些属性(例如,颜色、边缘或直方图)从背景中提取对象。本文将为大家详细介绍OpenCV中的阈值处理,需要的可以参考一下
    2022-02-02
  • 通过Python实现一个A/B测试详解

    通过Python实现一个A/B测试详解

    A/B测试,通过分析两种不同的营销策略,以此来选择最佳的营销策略,可以高效地将流量转化为销售额。本文主要介绍了如何通过Python实现一个A/B测试,感兴趣的可以了解一下
    2023-01-01
  • python全面解析接口返回数据

    python全面解析接口返回数据

    这篇文章主要介绍了python接口返回数据,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-02-02
  • Python如何通过Flask-Mail发送电子邮件

    Python如何通过Flask-Mail发送电子邮件

    这篇文章主要介绍了Python如何通过Flask-Mail发送电子邮件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • 数据清洗--DataFrame中的空值处理方法

    数据清洗--DataFrame中的空值处理方法

    今天小编就为大家分享一篇数据清洗--DataFrame中的空值处理方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python爬虫之教你利用Scrapy爬取图片

    Python爬虫之教你利用Scrapy爬取图片

    这篇文章主要介绍了Python爬虫之教你利用Scrapy爬取图片,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-04-04
  • 超详细注释之OpenCV构建透明的叠加层

    超详细注释之OpenCV构建透明的叠加层

    这篇文章主要介绍了OpenCV构建透明的叠加层,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • Python3实现的腾讯微博自动发帖小工具

    Python3实现的腾讯微博自动发帖小工具

    这篇文章主要为大家分享下腾讯微博自动发帖的Python3代码,需要的朋友可以参考下
    2013-11-11
  • Python+OpenCV实现基本的图像处理操作

    Python+OpenCV实现基本的图像处理操作

    说到图像处理,那必然要提到opencv模块了。本文将从最基本的opencv模块在图像的基本操作上说起,利用Python+OpenCV实现图像的读取保存等,感兴趣的可以了解一下
    2022-07-07

最新评论