Pytorch基础之torch.randperm的使用

 更新时间:2023年02月02日 08:33:31   作者:gy笨瓜  
这篇文章主要介绍了Pytorch基础之torch.randperm的使用方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

Pytorch torch.randperm的使用

torch.randperm(n):将0~n-1(包括0和n-1)随机打乱后获得的数字序列,函数名是random permutation缩写

【sample】

         torch.randperm(10)
===> tensor([2, 3, 6, 7, 8, 9, 1, 5, 0, 4])

torch.randn和torch.rand有什么区别

torch.rand和torch.randn有什么区别? y = torch.rand(5,3) y=torch.randn(5,3)

一个均匀分布,一个是标准正态分布。

均匀分布

torch.rand(*sizes, out=None) → Tensor

返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。

参数:

  • sizes (int...) - 整数序列,定义了输出张量的形状
  • out (Tensor, optinal) - 结果张量

例子:

torch.rand(2, 3)
0.0836 0.6151 0.6958
0.6998 0.2560 0.0139
[torch.FloatTensor of size 2x3]

标准正态分布

torch.randn(*sizes, out=None) → Tensor

返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。

参数:

  • sizes (int...) - 整数序列,定义了输出张量的形状
  • out (Tensor, optinal) - 结果张量

例子:

torch.randn(2, 3)
0.5419 0.1594 -0.0413
-2.7937 0.9534 0.4561
[torch.FloatTensor of size 2x3]

 其他:

离散正态分布

torch.normal(means, std, out=None) → → Tensor

线性间距向量

torch.linspace(start, end, steps=100, out=None) → Tensor

返回一个1维张量,包含在区间start和end上均匀间隔的step个点。

输出张量的长度由steps决定。

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

最新评论