Golang WaitGroup实现原理解析

 更新时间:2023年02月03日 09:07:41   作者:raoxiaoya  
WaitGroup是Golang并发的两种方式之一,一个是Channel,另一个是WaitGroup,下面这篇文章主要给大家介绍了关于golang基础之waitgroup用法以及使用要点的相关资料,需要的朋友可以参考下

原理解析

type WaitGroup struct {
   noCopy noCopy
   // 64-bit value: high 32 bits are counter, low 32 bits are waiter count.
   // 64-bit atomic operations require 64-bit alignment, but 32-bit
   // compilers only guarantee that 64-bit fields are 32-bit aligned.
   // For this reason on 32 bit architectures we need to check in state()
   // if state1 is aligned or not, and dynamically "swap" the field order if
   // needed.
   state1 uint64
   state2 uint32
}

其中 noCopy 是 golang 源码中检测禁止拷贝的技术。如果程序中有 WaitGroup 的赋值行为,使用 go vet 检查程序时,就会发现有报错。但需要注意的是,noCopy 不会影响程序正常的编译和运行。

state1字段

  • 高32位为counter,代表目前尚未完成的协程个数。
  • 低32位为waiter,代表目前已调用 Wait 的 goroutine 的个数,因为wait可以被多个协程调用。

state2为信号量。

WaitGroup 的整个调用过程可以简单地描述成下面这样:

  • 当调用 WaitGroup.Add(n) 时,counter 将会自增: counter + n
  • 当调用 WaitGroup.Wait() 时,会将 waiter++。同时调用 runtime_Semacquire(semap), 增加信号量,并挂起当前 goroutine。
  • 当调用 WaitGroup.Done() 时,将会 counter--。如果自减后的 counter 等于 0,说明 WaitGroup 的等待过程已经结束,则需要调用 runtime_Semrelease 释放信号量,唤醒正在 WaitGroup.Wait 的 goroutine。

关于内存对其

func (wg *WaitGroup) state() (statep *uint64, semap *uint32) {
	if unsafe.Alignof(wg.state1) == 8 || uintptr(unsafe.Pointer(&wg.state1))%8 == 0 {
		// state1 is 64-bit aligned: nothing to do.
		return &wg.state1, &wg.state2
	} else {
		// state1 is 32-bit aligned but not 64-bit aligned: this means that
		// (&state1)+4 is 64-bit aligned.
		state := (*[3]uint32)(unsafe.Pointer(&wg.state1))
		return (*uint64)(unsafe.Pointer(&state[1])), &state[0]
	}
}

如果变量是 64 位对齐 (8 byte), 则该变量的起始地址是 8 的倍数。如果变量是 32 位对齐 (4 byte),则该变量的起始地址是 4 的倍数。

state1 是 32 位的时候,那么state1被当成是一个数组[3]uint32,数组的第一位是semap,第二三位存储着counter, waiter正好是64位。

为什么会有这种奇怪的设定呢?这里涉及两个前提:

前提 1:在 WaitGroup 的真实逻辑中, counter 和 waiter 被合在了一起,当成一个 64 位的整数对外使用。当需要变化 counter 和 waiter 的值的时候,也是通过 atomic 来原子操作这个 64 位整数。

前提 2:在 32 位系统下,如果使用 atomic 对 64 位变量进行原子操作,调用者需要自行保证变量的 64 位对齐,否则将会出现异常。golang 的官方文档 sync/atomic/#pkg-note-BUG 原文是这么说的:

On ARM, x86-32, and 32-bit MIPS, it is the caller’s responsibility to arrange for 64-bit alignment of 64-bit words accessed atomically. The first word in a variable or in an allocated struct, array, or slice can be relied upon to be 64-bit aligned.

因此,在前提 1 的情况下,WaitGroup 需要对 64 位进行原子操作。根据前提 2,WaitGroup 需要自行保证 count+waiter 的 64 位对齐。

这个方法非常的巧妙,只不过是改变 semap 的位置顺序,就既可以保证 counter+waiter 一定会 64 位对齐,也可以保证内存的高效利用。

注: 有些文章会讲到,WaitGroup 两种不同的内存布局方式是 32 位系统和 64 位系统的区别,这其实不太严谨。准确的说法是 32 位对齐和 64 位对齐的区别。因为在 32 位系统下,state1 变量也有可能恰好符合 64 位对齐。

sync.mutex的源码中就没有出现内存对其的操作,虽然它也有大量的atomic操作,那是因为state int32

sync.mutex中也是将四个状态存在一个变量地址,其实这么做的目的就是为了实现原子操作,因为没有办法同时修改多个变量还要保证原子性。

WaitGroup 直接把 counterwaiter 看成了一个统一的 64 位变量。其中 counter 是这个变量的高 32 位,waiter 是这个变量的低 32 位。 在需要改变 counter 时, 通过将累加值左移 32 位的方式。

这里的原子操作并没有使用Mutex或者RWMutex这样的锁,主要是因为锁会带来不小的性能损耗,存在上下文切换,而对于单个内存地址的原子操作最好的方式是atomic,因为这是由底层硬件提供的支持(CPU指令),粒度更小,性能更高。

源码部分

func (wg *WaitGroup) Add(delta int) {
    // wg.state()返回的是地址
	statep, semap := wg.state()
    // 原子操作,修改statep高32位的值,即counter的值
	state := atomic.AddUint64(statep, uint64(delta)<<32)
    // 右移32位,使高32位变成了低32,得到counter的值
	v := int32(state >> 32)
    // 直接取低32位,得到waiter的值
	w := uint32(state)
	// 不规范的操作
	if v < 0 {
		panic("sync: negative WaitGroup counter")
	}
    // 不规范的操作
	if w != 0 && delta > 0 && v == int32(delta) {
		panic("sync: WaitGroup misuse: Add called concurrently with Wait")
	}
    // 这是正常的情况
	if v > 0 || w == 0 {
		return
	}
    // 剩下的就是 counter == 0 且 waiter != 0 的情况
    // 在这个情况下,*statep 的值就是 waiter 的值,否则就有问题
    // 在这个情况下,所有的任务都已经完成,可以将 *statep 整个置0
    // 同时向所有的Waiter释放信号量
	// This goroutine has set counter to 0 when waiters > 0.
	// Now there can't be concurrent mutations of state:
	// - Adds must not happen concurrently with Wait,
	// - Wait does not increment waiters if it sees counter == 0.
	// Still do a cheap sanity check to detect WaitGroup misuse.
	if *statep != state {
		panic("sync: WaitGroup misuse: Add called concurrently with Wait")
	}
	// Reset waiters count to 0.
	*statep = 0
	for ; w != 0; w-- {
		runtime_Semrelease(semap, false, 0)
	}
}
func (wg *WaitGroup) Done() {
	wg.Add(-1)
}
func (wg *WaitGroup) Wait() {
    // wg.state()返回的是地址
	statep, semap := wg.state()
    // for循环是配合CAS操作
	for {
		state := atomic.LoadUint64(statep)
		v := int32(state >> 32) // counter
		w := uint32(state) // waiter
        // 如果counter为0,说明所有的任务在调用Wait的时候就已经完成了,直接退出
        // 这就要求,必须在同步的情况下调用Add(),否则Wait可能先退出了
		if v == 0 {
			return
		}
		// waiter++,原子操作
		if atomic.CompareAndSwapUint64(statep, state, state+1) {
            // 如果自增成功,则获取信号量,此处信号量起到了同步的作用
			runtime_Semacquire(semap)
			return
		}
	}
}

总结一下,WaitGroup 的原理就五个点:内存对齐,原子操作,counter,waiter,信号量。

  • 内存对齐的作用是为了原子操作。
  • counter的增减使用原子操作,counter的作用是一旦为0就释放全部信号量。
  • waiter的自增使用原子操作,waiter的作用是表明要释放多少信号量。

到此这篇关于Golang WaitGroup实现原理解析的文章就介绍到这了,更多相关Go WaitGroup内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Golang极简入门教程(二):方法和接口

    Golang极简入门教程(二):方法和接口

    这篇文章主要介绍了Golang极简入门教程(二):方法和接口,本文同时讲解了错误、匿名域等内容,需要的朋友可以参考下
    2014-10-10
  • golang中的单引号转义问题

    golang中的单引号转义问题

    这篇文章主要介绍了golang中的单引号转义问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • 使用gin框架搭建简易服务的实现方法

    使用gin框架搭建简易服务的实现方法

    go语言web框架挺多的,本文就介绍了一下如何使用gin框架搭建简易服务的实现方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-12-12
  • Golang中闭包与常用场景详解

    Golang中闭包与常用场景详解

    在很多的开源项目里,经常看到闭包的运用,这篇文章主要为大家简要记录一下闭包的概念和一些常用的场景,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-11-11
  • 详解go-zero如何使用validator进行参数校验

    详解go-zero如何使用validator进行参数校验

    这篇文章主要介绍了如何使用validator库做参数校验的一些十分实用的使用技巧,包括翻译校验错误提示信息、自定义提示信息的字段名称、自定义校验方法等,感兴趣的可以了解下
    2024-01-01
  • 详解Golang如何实现节假日不打扰用户

    详解Golang如何实现节假日不打扰用户

    这篇文章主要为大家介绍了Golang如何实现节假日不打扰用户过程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-01-01
  • 成功安装vscode中go的相关插件(详细教程)

    成功安装vscode中go的相关插件(详细教程)

    这篇文章主要介绍了成功安装vscode中go的相关插件的详细教程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • Golang编程并发工具库MapReduce使用实践

    Golang编程并发工具库MapReduce使用实践

    这篇文章主要为大家介绍了Golang并发工具库MapReduce的使用实践,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-04-04
  • Golang 处理浮点数遇到的精度问题(使用decimal)

    Golang 处理浮点数遇到的精度问题(使用decimal)

    本文主要介绍了Golang 处理浮点数遇到的精度问题,不使用decimal会出大问题,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • 如何在Go中使用切片容量和长度

    如何在Go中使用切片容量和长度

    这篇文章主要介绍了如何在Go中使用切片容量和长度,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11

最新评论