PyTorch中Torch.arange函数详解

 更新时间:2023年02月03日 14:39:27   作者:_湘江夜话_  
PyTorch是由Facebook开发的开源机器学习库,它用于深度神经网络和自然语言处理,下面这篇文章主要给大家介绍了关于PyTorch中Torch.arange函数详解的相关资料,需要的朋友可以参考下

torch.arange函数详解

官方文档:torch.arange

函数原型

arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor

用法

返回大小为一维张量,其值介于区间 为步长等间隔取值

参数说明

参数类型说明
startNumber起始值,默认值:0
endNumber结束值
stepNumber步长,默认值:1

关键字参数

关键字参数类型说明
outTensor输出张量
dtypetorch.dtype期望的返回张量的数据类型。默认值:如果是None,则使用全局默认值。如果未给出 dtype,则从其他输入参数推断数据类型。如果 start、end 或 stop 中的任何一个是浮点数,则 dtype被推断为默认值,参见 get_default_dtype()。否则,dtype 被推断为 torch.int64
layouttorch.layout返回张量的期望 layout。默认值:torch.strided
devicetorch.device返回张量的期望设备。默认值:如果是None,则使用当前设备作为默认张量类型,参见torch.set_default_tensor_type()。对于 CPU 类型的张量,则 device 是 CPU ,若是 CUDA 类型的张量,则 device 是当前的 CUDA 设备
requires_gradboolautograd 是否记录返回张量上所作的操作。默认值:False

代码示例

    >>> torch.arange(5)  # 默认以 0 为起点
    tensor([ 0,  1,  2,  3,  4])
    >>> torch.arange(1, 4)  # 默认间隔为 1
    tensor([ 1,  2,  3])
    >>> torch.arange(1, 2.5, 0.5)  # 指定间隔 0.5
    tensor([ 1.0000,  1.5000,  2.0000])

pyTorch中torch.range()和torch.arange()的区别

torch.range()和torch.arange()的区别

x = torch.range(-8, 8)
y = torch.arange(-8, 8)
print(x, x.dtype)
print(y, y.dtype)

output:

   tensor([-8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.,6., 7., 8.]) torch.float32
   tensor([-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]) torch.int64

可以看到,torch.range()的范围是[-8, 8],类型为torch.float32

torch.arange()的范围是[-8, 8),类型为torch.int64

在梯度设置时会出现错误:

x = torch.range(-8, 8, 1, requires_grad=True)
y = torch.arange(-8, 8, 1, requires_grad=True)
print(x, x.dtype)
print(y, y.dtype)

即只有当类型为float时才可设置requires_grad=True,故可将

y = torch.arange(-8, 8, 1, requires_grad=True)

改为以下,即手动改变数据类型即可。

y = torch.arange(-8.0, 8.0, 1.0, requires_grad=True)

output:
   tensor([-8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.,6., 7., 8.], requires_grad=True)
   torch.float32
   tensor([-8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.,6., 7.], requires_grad=True)
   torch.float32

总结

到此这篇关于PyTorch中Torch.arange函数的文章就介绍到这了,更多相关PyTorch Torch.arange函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 简单介绍Python中用于求最小值的min()方法

    简单介绍Python中用于求最小值的min()方法

    这篇文章主要介绍了简单介绍Python中用于求最小值的min()方法,是Python入门中的基础知识,需要的朋友可以参考下
    2015-05-05
  • 报错No module named numpy问题的解决办法

    报错No module named numpy问题的解决办法

    之前安装了Python,后来因为练习使用Python写科学计算的东西,又安装了Anaconda,但是安装Anaconda之后又出现了一个问题,下面这篇文章主要给大家介绍了关于报错No module named numpy问题的解决办法,需要的朋友可以参考下
    2022-08-08
  • 基于python实现简单日历

    基于python实现简单日历

    这篇文章主要为大家详细介绍了基于python实现简单日历,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-07-07
  • 详解Python程序与服务器连接的WSGI接口

    详解Python程序与服务器连接的WSGI接口

    这篇文章主要介绍了Python程序与服务器连接的WSGI接口,是Python网络编程学习当中的重要内容,需要的朋友可以参考下
    2015-04-04
  • Python用户自定义异常的实现

    Python用户自定义异常的实现

    这篇文章主要介绍了Python用户自定义异常的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • Python异步操作MySQL示例【使用aiomysql】

    Python异步操作MySQL示例【使用aiomysql】

    这篇文章主要介绍了Python异步操作MySQL,结合实例形式分析了Python安装及使用aiomysql针对mysql数据库异步操作相关实现技巧,需要的朋友可以参考下
    2019-05-05
  • python学生信息管理系统实现代码

    python学生信息管理系统实现代码

    这篇文章主要为大家详细介绍了python学生信息管理系统的实现代码,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-06-06
  • Python中的sys.stdout.write实现打印刷新功能

    Python中的sys.stdout.write实现打印刷新功能

    今天小编就为大家分享一篇Python中的sys.stdout.write实现打印刷新功能,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • 基于Python实现视频自动下载软件

    基于Python实现视频自动下载软件

    这篇文章主要为大家详细介绍了如何利用Python实现一个自动下载视频、弹幕、评论的软件,文中的示例代码讲解详细,需要的小伙伴可以参考一下
    2022-08-08
  • Python下划线命名模式

    Python下划线命名模式

    下划线前缀的含义是告知其他程序员:以单个下划线开头的变量或方法仅供内部使用,该约定在PEP 8中有定义,这篇文章主要介绍了Python下划线命名模式,需要的朋友可以参考下
    2023-10-10

最新评论