Python机器学习利用鸢尾花数据绘制ROC和AUC曲线

 更新时间:2023年02月07日 16:33:51   作者:fanstuck  
这篇文章主要为大家介绍了Python机器学习利用鸢尾花数据绘制ROC和AUC曲线实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

一、ROC与AUC

很多学习器是为了测试样本产生的一个实值或概率预测,然后将这个预测值与一个分类阈值(threshold)进行比较,若大于阈值则分为正类,否则为反类。主要看需要建立的模型侧重于想用在测试数据的泛华性能的好坏。排序本身的质量好坏体系了综合考虑学习去在不同任务下的“期望泛化性能”的好坏。ROC曲线则是从这个角度出发来研究学习器泛化性能。

1.ROC

ROC的全称是“受试者工作特征”曲线,与P-R曲线相似。与P-R曲线使用查准率、查全率为纵、横坐标不同,ROC曲线的纵轴是“真正例率”{简称TPR),横轴是“假正例率”(简称FPR)二者分别定义为:

ROC曲线图以真正例率为Y轴,假正例率为X轴。

2.AUC

进行检验判定ROC曲线性能的合理判据是比较ROC曲线下的面积,即AUC。从定义知AUC可通过对ROC曲线下各部分的面积求和而得,AUC可估算为:

从形式化看,AUC考虑的是样本预测的排序质量,因此它与排序误差有紧密联系。因此存在排序损失。

二、代码实现

形式基本和P-R曲线差不多,只是几个数值要改一下。

代码如下(示例):

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, auc
from itertools import cycle
from sklearn.preprocessing import label_binarize #标签二值化LabelBinarizer,可以把yes和no转化为0和1,或是把incident和normal转化为0和1。
import numpy as np
from sklearn.multiclass import OneVsRestClassifier
iris = datasets.load_iris()
# 鸢尾花数据导入
X = iris.data
#每一列代表了萼片或花瓣的长宽,一共4列,每一列代表某个被测量的鸢尾植物,iris.shape=(150,4)
y = iris.target
#target是一个数组,存储了data中每条记录属于哪一类鸢尾植物,所以数组的长度是150,所有不同值只有三个
random_state = np.random.RandomState(0)
#给定状态为0的随机数组
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
n_samples, n_features = X.shape
X  = np.c_[X, random_state.randn(n_samples, 200 * n_features)]
#添加合并生成特征测试数据集
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.25,
                                                    random_state=0)
#根据此模型训练简单数据分类器
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
                                 random_state=random_state))#线性分类支持向量机
y_score = classifier.fit(X_train, y_train).decision_function(X_test)
#用一个分类器对应一个类别, 每个分类器都把其他全部的类别作为相反类别看待。
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
    #计算ROC曲线面积
    roc_auc[i] = auc(fpr[i], tpr[i])
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
import matplotlib.pyplot as plt
plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color='darkorange',
         lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.ylim([0.0, 1.0])
plt.xlim([0.0, 1.0])
plt.legend(loc="lower right")
plt.title("Precision-Recall")
plt.show()

效果

以上就是Python机器学习利用鸢尾花数据绘制ROC和AUC曲线的详细内容,更多关于Python数据绘制ROC AUC的资料请关注脚本之家其它相关文章!

相关文章

  • python中的列表推导浅析

    python中的列表推导浅析

    这篇文章主要介绍了python中的列表推导,需要的朋友可以参考下
    2014-04-04
  • 关于pandas-profiling的降级之旅

    关于pandas-profiling的降级之旅

    这篇文章主要介绍了关于pandas-profiling的降级之旅,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • Python写的英文字符大小写转换代码示例

    Python写的英文字符大小写转换代码示例

    这篇文章主要介绍了Python写的英文字符大小写转换代码示例,本文例子相对简单,本文直接给出代码实例,需要的朋友可以参考下
    2015-03-03
  • Python3 mmap内存映射文件示例解析

    Python3 mmap内存映射文件示例解析

    这篇文章主要介绍了Python3 mmap内存映射文件示例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • python 如何在list中找Topk的数值和索引

    python 如何在list中找Topk的数值和索引

    这篇文章主要介绍了python 如何在list中找Topk的数值和索引的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • python数据爬下来保存的位置

    python数据爬下来保存的位置

    在本篇文章里小编给大家整理的是关于python数据爬下来保存的位置,需要的朋友们可以参考下。
    2020-02-02
  • 拿来就用!Python批量合并PDF的示例代码

    拿来就用!Python批量合并PDF的示例代码

    这篇文章主要介绍了Python批量合并PDF的示例代码,帮助大家更好的理解和学习Python,感兴趣的朋友可以了解下
    2020-08-08
  • 如何爬取通过ajax加载数据的网站

    如何爬取通过ajax加载数据的网站

    这篇文章主要介绍了如何爬取通过ajax加载数据的网站,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 用Python编写一个国际象棋AI程序

    用Python编写一个国际象棋AI程序

    在这篇文章中我会介绍这个AI如何工作,每一个部分做什么,它为什么能那样工作起来。你可以直接通读本文,或者去下载代码,边读边看代码。虽然去看看其他文件中有什么AI依赖的类也可能有帮助,但是AI部分全都在AI.py文件中
    2014-11-11
  • Python 深入理解yield

    Python 深入理解yield

    yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法。
    2008-09-09

最新评论