Pytorch中TensorDataset,DataLoader的联合使用方式

 更新时间:2023年02月20日 09:44:23   作者:拥抱晨曦之温暖  
这篇文章主要介绍了Pytorch中TensorDataset,DataLoader的联合使用方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

Pytorch中TensorDataset,DataLoader的联合使用

首先从字面意义上来理解TensorDataset和DataLoader,TensorDataset是个只用来存放tensor(张量)的数据集,而DataLoader是一个数据加载器,一般用到DataLoader的时候就说明需要遍历和操作数据了。

TensorDataset(tensor1,tensor2)的功能就是形成数据tensor1和标签tensor2的对应,也就是说tensor1中是数据,而tensor2是tensor1所对应的标签。

来个小例子

from torch.utils.data import TensorDataset,DataLoader
import torch
 
a = torch.tensor([[1, 2, 3],
                  [4, 5, 6],
                  [7, 8, 9],
                  [1, 2, 3],
                  [4, 5, 6],
                  [7, 8, 9],
                  [1, 2, 3],
                  [4, 5, 6],
                  [7, 8, 9],
                  [1, 2, 3],
                  [4, 5, 6],
                  [7, 8, 9]])
 
b = torch.tensor([44, 55, 66, 44, 55, 66, 44, 55, 66, 44, 55, 66])
train_ids = TensorDataset(a,b)
# 切片输出
print(train_ids[0:4]) # 第0,1,2,3行
# 循环取数据
for x_train,y_label in train_ids:
    print(x_train,y_label)

下面是对应的输出:

(tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9],
        [1, 2, 3]]), tensor([44, 55, 66, 44]))
===============================================
tensor([1, 2, 3]) tensor(44)
tensor([4, 5, 6]) tensor(55)
tensor([7, 8, 9]) tensor(66)
tensor([1, 2, 3]) tensor(44)
tensor([4, 5, 6]) tensor(55)
tensor([7, 8, 9]) tensor(66)
tensor([1, 2, 3]) tensor(44)
tensor([4, 5, 6]) tensor(55)
tensor([7, 8, 9]) tensor(66)
tensor([1, 2, 3]) tensor(44)
tensor([4, 5, 6]) tensor(55)
tensor([7, 8, 9]) tensor(66)

从输出结果我们就可以很好的理解,tensor型数据和tensor型标签的对应了,这就是TensorDataset的基本应用。

接下来我们把构造好的TensorDataset封装到DataLoader来操作里面的数据:

# 参数说明,dataset=train_ids表示需要封装的数据集,batch_size表示一次取几个
# shuffle表示乱序取数据,设为False表示顺序取数据,True表示乱序取数据
train_loader = DataLoader(dataset=train_ids,batch_size=4,shuffle=False)
# 注意enumerate返回值有两个,一个是序号,一个是数据(包含训练数据和标签)
for i,data in enumerate(train_loader,1):
    train_data, label = data
    print(' batch:{0} train_data:{1}  label: {2}'.format(i+1, train_data, label))

下面是对应的输出:

 batch:1 x_data:tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9],
        [1, 2, 3]])  label: tensor([44, 55, 66, 44])
 batch:2 x_data:tensor([[4, 5, 6],
        [7, 8, 9],
        [1, 2, 3],
        [4, 5, 6]])  label: tensor([55, 66, 44, 55])
 batch:3 x_data:tensor([[7, 8, 9],
        [1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])  label: tensor([66, 44, 55, 66])

至此,TensorDataset和DataLoader的联合使用就介绍完了。

我们再看一下这两种方法的源码:

class TensorDataset(Dataset[Tuple[Tensor, ...]]):
    r"""Dataset wrapping tensors.
    Each sample will be retrieved by indexing tensors along the first dimension.
    Arguments:
        *tensors (Tensor): tensors that have the same size of the first dimension.
    """
    tensors: Tuple[Tensor, ...]
 
    def __init__(self, *tensors: Tensor) -> None:
        assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors)
        self.tensors = tensors
 
    def __getitem__(self, index):
        return tuple(tensor[index] for tensor in self.tensors)
 
    def __len__(self):
        return self.tensors[0].size(0)
 
# 由于此类内容过多,故仅列举了与本文相关的参数,其余参数可以自行去查看源码
class DataLoader(Generic[T_co]):
    r"""
    Data loader. Combines a dataset and a sampler, and provides an iterable over
    the given dataset.
    The :class:`~torch.utils.data.DataLoader` supports both map-style and
    iterable-style datasets with single- or multi-process loading, customizing
    loading order and optional automatic batching (collation) and memory pinning.
    See :py:mod:`torch.utils.data` documentation page for more details.
    Arguments:
        dataset (Dataset): dataset from which to load the data.
        batch_size (int, optional): how many samples per batch to load
            (default: ``1``).
        shuffle (bool, optional): set to ``True`` to have the data reshuffled
            at every epoch (default: ``False``).
    """
    dataset: Dataset[T_co]
    batch_size: Optional[int]
 
    def __init__(self, dataset: Dataset[T_co], batch_size: Optional[int] = 1,
                 shuffle: bool = False):
 
        self.dataset = dataset
        self.batch_size = batch_size

Pytorch的DataLoader和Dataset以及TensorDataset的源码分析

1.为什么要用DataLoader和Dataset

要对大量数据进行加载和处理时因为可能会出现内存不够用的情况,这时候就需要用到数据集类Dataset或TensorDataset和数据集加载类DataLoader了。

使用这些类后可以将原本的数据分成小块,在需要使用的时候再一部分一本分读进内存中,而不是一开始就将所有数据读进内存中。

2.Dateset的使用

pytorch中的torch.utils.data.Dataset是表示数据集的抽象类,但它一般不直接使用,而是通过自定义一个数据集来使用。

来自定义数据集应该继承Dataset并应该有实现返回数据集尺寸的__len__方法和用来获取索引数据的__getitem__方法。

Dataset类的源码如下:

class Dataset(object):
    r"""An abstract class representing a :class:`Dataset`.

    All datasets that represent a map from keys to data samples should subclass
    it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a
    data sample for a given key. Subclasses could also optionally overwrite
    :meth:`__len__`, which is expected to return the size of the dataset by many
    :class:`~torch.utils.data.Sampler` implementations and the default options
    of :class:`~torch.utils.data.DataLoader`.

    .. note::
      :class:`~torch.utils.data.DataLoader` by default constructs a index
      sampler that yields integral indices.  To make it work with a map-style
      dataset with non-integral indices/keys, a custom sampler must be provided.
    """

    def __getitem__(self, index):
        raise NotImplementedError

    def __add__(self, other):
        return ConcatDataset([self, other])

    # No `def __len__(self)` default?
    # See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
    # in pytorch/torch/utils/data/sampler.py

可以看到Dataset类中没有__len__方法,虽然有__getitem__方法,但是并没有实现啥有用的功能。

所以要写一个Dataset类的子类来实现其应有的功能。

自定义类的实现举例:

import torch
from torch.utils.data import Dataset, DataLoader, TensorDataset
from torch.autograd import Variable
import numpy as np
import pandas as pd

value_df = pd.read_csv('data1.csv')
value_array = np.array(value_df)
print("value_array.shape =", value_array.shape)  # (73700, 300)
value_size = value_array.shape[0]  # 73700
train_size = int(0.7*value_size)

train_array = val_array[:train_size]  
train_label_array = val_array[60:train_size+60]

class DealDataset(Dataset):
    """
        下载数据、初始化数据,都可以在这里完成
    """

    def __init__(self, *arrays):
        assert all(arrays[0].shape[0] == array.shape[0] for array in arrays)
        self.arrays = arrays

    def __getitem__(self, index):
        return tuple(array[index] for array in self.arrays)

    def __len__(self):
        return self.arrays[0].shape[0]


# 实例化这个类,然后我们就得到了Dataset类型的数据,记下来就将这个类传给DataLoader,就可以了。
train_dataset = DealDataset(train_array, train_label_array)

train_loader2 = DataLoader(dataset=train_dataset,
                           batch_size=32,
                           shuffle=True)

for epoch in range(2):
    for i, data in enumerate(train_loader2):
        # 将数据从 train_loader 中读出来,一次读取的样本数是32个
        inputs, labels = data

        # 将这些数据转换成Variable类型
        inputs, labels = Variable(inputs), Variable(labels)

        # 接下来就是跑模型的环节了,我们这里使用print来代替
        print("epoch:", epoch, "的第", i, "个inputs", inputs.data.size(), "labels", labels.data.size())

结果:

epoch: 0 的第 0 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
epoch: 0 的第 1 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
epoch: 0 的第 2 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
epoch: 0 的第 3 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
epoch: 0 的第 4 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
epoch: 0 的第 5 个inputs torch.Size([32, 300]) labels torch.Size([32, 300])
...

3.TensorDataset的使用

TensorDataset是可以直接使用的数据集类,它的源码如下:

class TensorDataset(Dataset):
    r"""Dataset wrapping tensors.

    Each sample will be retrieved by indexing tensors along the first dimension.

    Arguments:
        *tensors (Tensor): tensors that have the same size of the first dimension.
    """

    def __init__(self, *tensors):
        assert all(tensors[0].size(0) == tensor.size(0) for tensor in tensors)
        self.tensors = tensors

    def __getitem__(self, index):
        return tuple(tensor[index] for tensor in self.tensors)

    def __len__(self):
        return self.tensors[0].size(0)

可以看到TensorDataset类是Dataset类的子类,且拥有返回数据集尺寸的__len__方法和用来获取索引数据的__getitem__方法,所以可以直接使用。

它的结构跟上面自定义的子类的结构是一样的,惟一的不同是TensorDataset已经规定了传入的数据必须是torch.Tensor类型的,而自定义子类可以自由设定。

使用举例:

import torch
from torch.utils.data import Dataset, DataLoader, TensorDataset
from torch.autograd import Variable
import numpy as np
import pandas as pd

value_df = pd.read_csv('data1.csv')
value_array = np.array(value_df)
print("value_array.shape =", value_array.shape)  # (73700, 300)
value_size = value_array.shape[0]  # 73700
train_size = int(0.7*value_size)

train_array = val_array[:train_size]  
train_tensor = torch.tensor(train_array, dtype=torch.float32).to(device)
train_label_array = val_array[60:train_size+60]
train_labels_tensor = torch.tensor(train_label_array,dtype=torch.float32).to(device)

train_dataset = TensorDataset(train_tensor, train_labels_tensor)
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=100,
                          shuffle=False,
                          num_workers=0)

for epoch in range(2):
    for i, data in enumerate(train_loader):
        inputs, labels = data
        inputs, labels = Variable(inputs), Variable(labels)
        print(epoch, i, "inputs", inputs.data.size(), "labels", labels.data.size())

结果:

0 0 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 1 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 2 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 3 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 4 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 5 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 6 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 7 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 8 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 9 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
0 10 inputs torch.Size([100, 300]) labels torch.Size([100, 300])
...

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python实现一个完整学生管理系统

    Python实现一个完整学生管理系统

    这篇文章主要为大家详细介绍了如何利用python实现学生管理系统(面向对象版),文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2023-01-01
  • NumPy.npy与pandas DataFrame的实例讲解

    NumPy.npy与pandas DataFrame的实例讲解

    今天小编就为大家分享一篇NumPy.npy与pandas DataFrame的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python数学建模StatsModels统计回归可视化示例详解

    Python数学建模StatsModels统计回归可视化示例详解

    图形总是比数据更加醒目、直观。解决统计回归问题,无论在分析问题的过程中,还是在结果的呈现和发表时,都需要可视化工具的帮助和支持
    2021-10-10
  • 微信跳一跳辅助python代码实现

    微信跳一跳辅助python代码实现

    这篇文章主要为大家详细介绍了微信跳一跳辅助的python代码实现资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • Python爬虫数据的分类及json数据使用小结

    Python爬虫数据的分类及json数据使用小结

    这篇文章主要介绍了Python爬虫数据的分类及json数据使用小结,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-03-03
  • python scrapy框架的日志文件问题

    python scrapy框架的日志文件问题

    这篇文章主要介绍了python scrapy框架的日志文件问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • 一篇文章带你学习Python3的高阶函数

    一篇文章带你学习Python3的高阶函数

    这篇文章主要为大家详细介绍了Python3的高阶函数,主要介绍什么是高阶函数,高阶函数的用法以及几个常见的内置的高阶函数,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-01-01
  • Python多继承以及MRO顺序的使用

    Python多继承以及MRO顺序的使用

    这篇文章主要介绍了Python多继承以及MRO顺序的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • 基于keras 模型、结构、权重保存的实现

    基于keras 模型、结构、权重保存的实现

    今天小编就为大家分享一篇基于keras 模型、结构、权重保存的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • python加速器numba使用详解

    python加速器numba使用详解

    本文主要介绍了python加速器numba使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02

最新评论