python中如何实现径向基核函数
更新时间:2023年02月20日 10:16:56 作者:柳叶吴钩
这篇文章主要介绍了python中如何实现径向基核函数问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
1、生成数据集(双月数据集)
class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1; else: return -1; def sig(self,x): return 1.0/(1+np.exp(x)) def dbmoon(self): N1 = 10*self.N N = self.N r = self.r w2 = self.w/2 d = self.d done = True data = np.empty(0) while done: #generate Rectangular data tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5) tmp_y = (r+w2)*np.random.random([N1, 1]) tmp = np.concatenate((tmp_x, tmp_y), axis=1) tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y) #generate double moon data ---upper idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2)) idx = (idx.nonzero())[0] if data.shape[0] == 0: data = tmp.take(idx, axis=0) else: data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0) if data.shape[0] >= N: done = False #print (data) db_moon = data[0:N, :] #print (db_moon) #generate double moon data ----down data_t = np.empty([N, 2]) data_t[:, 0] = data[0:N, 0] + r data_t[:, 1] = -data[0:N, 1] - d db_moon = np.concatenate((db_moon, data_t), axis=0) return db_moon
2、k均值聚类
def k_means(input_cells, k_count): count = len(input_cells) #点的个数 x = input_cells[0:count, 0] y = input_cells[0:count, 1] #随机选择K个点 k = rd.sample(range(count), k_count) k_point = [[x[i], [y[i]]] for i in k] #保证有序 k_point.sort() global frames #global step while True: km = [[] for i in range(k_count)] #存储每个簇的索引 #遍历所有点 for i in range(count): cp = [x[i], y[i]] #当前点 #计算cp点到所有质心的距离 _sse = [distance(k_point[j], cp) for j in range(k_count)] #cp点到那个质心最近 min_index = _sse.index(min(_sse)) #把cp点并入第i簇 km[min_index].append(i) #更换质心 k_new = [] for i in range(k_count): _x = sum([x[j] for j in km[i]]) / len(km[i]) _y = sum([y[j] for j in km[i]]) / len(km[i]) k_new.append([_x, _y]) k_new.sort() #排序 if (k_new != k_point):#一直循环直到聚类中心没有变化 k_point = k_new else: return k_point,km
3、高斯核函数
高斯核函数,主要的作用是衡量两个对象的相似度,当两个对象越接近,即a与b的距离趋近于0,则高斯核函数的值趋近于1,反之则趋近于0,换言之:
两个对象越相似,高斯核函数值就越大
作用:
- 用于分类时,衡量各个类别的相似度,其中sigma参数用于调整过拟合的情况,sigma参数较小时,即要求分类器,加差距很小的类别也分类出来,因此会出现过拟合的问题;
- 用于模糊控制时,用于模糊集的隶属度。
def gaussian (a,b, sigma): return np.exp(-norm(a-b)**2 / (2 * sigma**2))
4、求高斯核函数的方差
Sigma_Array = [] for j in range(k_count): Sigma = [] for i in range(len(center_array[j][0])): temp = Phi(np.array([center_array[j][0][i],center_array[j][1][i]]),np.array(center[j])) Sigma.append(temp) Sigma = np.array(Sigma) Sigma_Array.append(np.cov(Sigma))
5、显示高斯核函数计算结果
gaussian_kernel_array = [] fig = plt.figure() ax = Axes3D(fig) for j in range(k_count): gaussian_kernel = [] for i in range(len(center_array[j][0])): temp = Phi(np.array([center_array[j][0][i],center_array[j][1][i]]),np.array(center[j])) temp1 = gaussian(temp,Sigma_Array[0]) gaussian_kernel.append(temp1) gaussian_kernel_array.append(gaussian_kernel) ax.scatter(center_array[j][0], center_array[j][1], gaussian_kernel_array[j],s=20) plt.show()
6、运行结果
7、完整代码
# coding:utf-8 import numpy as np import pylab as pl import random as rd import imageio import math import random import matplotlib.pyplot as plt import numpy as np import mpl_toolkits.mplot3d from mpl_toolkits.mplot3d import Axes3D from scipy import * from scipy.linalg import norm, pinv from matplotlib import pyplot as plt random.seed(0) #定义sigmoid函数和它的导数 def sigmoid(x): return 1.0/(1.0+np.exp(-x)) def sigmoid_derivate(x): return x*(1-x) #sigmoid函数的导数 class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1; else: return -1; def sig(self,x): return 1.0/(1+np.exp(x)) def dbmoon(self): N1 = 10*self.N N = self.N r = self.r w2 = self.w/2 d = self.d done = True data = np.empty(0) while done: #generate Rectangular data tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5) tmp_y = (r+w2)*np.random.random([N1, 1]) tmp = np.concatenate((tmp_x, tmp_y), axis=1) tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y) #generate double moon data ---upper idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2)) idx = (idx.nonzero())[0] if data.shape[0] == 0: data = tmp.take(idx, axis=0) else: data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0) if data.shape[0] >= N: done = False #print (data) db_moon = data[0:N, :] #print (db_moon) #generate double moon data ----down data_t = np.empty([N, 2]) data_t[:, 0] = data[0:N, 0] + r data_t[:, 1] = -data[0:N, 1] - d db_moon = np.concatenate((db_moon, data_t), axis=0) return db_moon def distance(a, b): return (a[0]- b[0]) ** 2 + (a[1] - b[1]) ** 2 #K均值算法 def k_means(input_cells, k_count): count = len(input_cells) #点的个数 x = input_cells[0:count, 0] y = input_cells[0:count, 1] #随机选择K个点 k = rd.sample(range(count), k_count) k_point = [[x[i], [y[i]]] for i in k] #保证有序 k_point.sort() global frames #global step while True: km = [[] for i in range(k_count)] #存储每个簇的索引 #遍历所有点 for i in range(count): cp = [x[i], y[i]] #当前点 #计算cp点到所有质心的距离 _sse = [distance(k_point[j], cp) for j in range(k_count)] #cp点到那个质心最近 min_index = _sse.index(min(_sse)) #把cp点并入第i簇 km[min_index].append(i) #更换质心 k_new = [] for i in range(k_count): _x = sum([x[j] for j in km[i]]) / len(km[i]) _y = sum([y[j] for j in km[i]]) / len(km[i]) k_new.append([_x, _y]) k_new.sort() #排序 if (k_new != k_point):#一直循环直到聚类中心没有变化 k_point = k_new else: pl.figure() pl.title("N=%d,k=%d iteration"%(count,k_count)) for j in range(k_count): pl.plot([x[i] for i in km[j]], [y[i] for i in km[j]], color[j%4]) pl.plot(k_point[j][0], k_point[j][1], dcolor[j%4]) return k_point,km def Phi(a,b): return norm(a-b) def gaussian (x, sigma): return np.exp(-x**2 / (2 * sigma**2)) if __name__ == '__main__': #计算平面两点的欧氏距离 step=0 color=['.r','.g','.b','.y']#颜色种类 dcolor=['*r','*g','*b','*y']#颜色种类 frames = [] N = 200 d = -4 r = 10 width = 6 data_source = moon_data_class(N, d, r, width) data = data_source.dbmoon() # x0 = [1 for x in range(1,401)] input_cells = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose() labels_pre = [[1] for y in range(1, 201)] labels_pos = [[0] for y in range(1, 201)] labels=labels_pre+labels_pos k_count = 2 center,km = k_means(input_cells, k_count) test = Phi(input_cells[1],np.array(center[0])) print(test) test = distance(input_cells[1],np.array(center[0])) print(np.sqrt(test)) count = len(input_cells) x = input_cells[0:count, 0] y = input_cells[0:count, 1] center_array = [] for j in range(k_count): center_array.append([[x[i] for i in km[j]], [y[i] for i in km[j]]]) Sigma_Array = [] for j in range(k_count): Sigma = [] for i in range(len(center_array[j][0])): temp = Phi(np.array([center_array[j][0][i],center_array[j][1][i]]),np.array(center[j])) Sigma.append(temp) Sigma = np.array(Sigma) Sigma_Array.append(np.cov(Sigma)) gaussian_kernel_array = [] fig = plt.figure() ax = Axes3D(fig) for j in range(k_count): gaussian_kernel = [] for i in range(len(center_array[j][0])): temp = Phi(np.array([center_array[j][0][i],center_array[j][1][i]]),np.array(center[j])) temp1 = gaussian(temp,Sigma_Array[0]) gaussian_kernel.append(temp1) gaussian_kernel_array.append(gaussian_kernel) ax.scatter(center_array[j][0], center_array[j][1], gaussian_kernel_array[j],s=20) plt.show()
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python详细讲解图像处理的而两种库OpenCV和Pillow
这篇文章介绍了Python使用OpenCV与Pillow分别进行图像处理的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2022-06-06Python数据可视化中的时间序列图表功能(实例展示其强大功能)
时间序列图表在多个领域中都有广泛的应用,通过Python中的各种绘图库和数据分析工具,我们可以方便地对时间序列数据进行可视化和分析,本文提供的示例代码和方法能够为您的时间序列数据分析工作提供有益的参考,感兴趣的朋友跟随小编一起看看吧2024-07-07python创建Flask Talisman应用程序的步骤详解
Flask是一个功能强大的Web框架,主要用于使用Python语言开发有趣的Web应用程序,Talisman基本上是一个Flask扩展,用于添加HTTP安全标头我们的Flask应用程序易于实施,本文就给大家讲讲带Talisman的Flask安全性,需要的朋友可以参考下2023-09-09
最新评论