Pytorch:Conv2d卷积前后尺寸详解
更新时间:2023年02月21日 09:41:31 作者:Serendipity0928
这篇文章主要介绍了Pytorch:Conv2d卷积前后尺寸,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
Pytorch:Conv2d卷积前后尺寸
Conv2d参数
尺寸变化
卷积前的尺寸为(N,C,W,H) ,卷积后尺寸为(N,F,W_n,H_n)
- W_n = (W-F+S+2P)/S 向下取整
- H_n = (H-F+S+2P)/S
示例
# m = nn.Conv2d(16, 33, 3, stride=2) # non-square kernels and unequal stride and with padding m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) # non-square kernels and unequal stride and with padding and dilation # m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)) input = torch.randn(20, 16, 50, 100) print(input.size()) output = m(input) print(output.size())
反卷积(转置卷积)Conv2DTranspose 输出的尺寸大小
keras的Conv2DTranspose
The size of the input feature map: (N, N) Conv2dTranspose(kernel_size=k, padding, strides=s) padding=‘same' ,输出尺寸 = N × s padding=‘valid',输出尺寸 = (N-1) × s + k
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python使用mongodb保存爬取豆瓣电影的数据过程解析
这篇文章主要介绍了Python使用mongodb保存爬取豆瓣电影的数据过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2019-08-08
最新评论