tensorflow中Dense函数的具体使用

 更新时间:2023年03月02日 09:46:23   作者:一穷二白到年薪百万  
本文主要介绍了tensorflow中Dense函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1 作用

注意此处Tensorflow版本是2.0+。
由于本人是Pytorch用户,对Tensorflow不是很熟悉,在读到用tf写的代码时就很是麻烦。如图所示,遇到了如下代码:

h = Dense(units=adj_dim, activation=None)(dec_in)

Dense层就是全连接层,对于层方式的初始化的时候,layers.Dense(units,activation)函数一般只需要指定输出节点数Units和激活函数类型即可。输入节点数将根据第一次运算时输入的shape确定,同时输入、输出节点自动创建并初始化权值w和偏置向量b。

下面是Dense的接口

Dense(units,
 activation=None, 
 use_bias=True, 
 kernel_initializer='glorot_uniform', 
 bias_initializer='zeros', 
 kernel_regularizer=None, 
 bias_regularizer=None, 
 activity_regularizer=None, 
 kernel_constraint=None, bias_constraint=None)

units, 代表该层的输出维度
activation=None, 激活函数.但是默认 liner
use_bias=True, 是否使用b 直线 y=ax+b 中的 b

此处没有写 iuput 的情况, 通常会有两种写法:

1 : Dense(units,input_shape())

2 : Dense(units)(x) #这里的 x 是以张量.

Dense( n )( x ) : = ReLU ( W x + b )

W 是权重函数, Dense() 会随机给 W 一个初始值。所以这里跟Pytorch的nn.linear()一样。

2 例子

# 使用第一种方法进行初始化
# 作为 Sequential 模型的第一层,需要指定输入维度。可以为 input_shape=(16,) 或者 input_dim=16,这两者是等价的。
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# 现在模型就会以尺寸为 (*, 16) 的数组作为输入,
# 其输出数组的尺寸为 (*, 32)

# 在第一层之后,就不再需要指定输入的尺寸了:
model.add(Dense(32))

3 与torch.nn.Linear的区别

# Pytorch实现
trd = torch.nn.Linear(in_features = 3, out_features = 30)
y = trd(torch.ones(5, 3))
print(y.size())
# torch.Size([5, 30])

# Tensorflow实现
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(30, input_shape=(5,), activation=None))
————————————————————————————————————
tfd = tf.keras.layers.Dense(30, input_shape=(3,), activation=None)
x = tfd(tf.ones(shape=(5, 3)))
print(x.shape)
# (5, 30)

上面Tensorflow的实现方式相同,但是我存在疑惑

4 参考文献

[1]dense层、激活函数、输出层设计
[2]Dense(units, activation=None,)初步
[3]深入理解 keras 中 Dense 层参数
[4]tensorflow - Tensorflow 的 tf.keras.layers.Dense 和 PyTorch 的 torch.nn.Linear 的区别?

到此这篇关于tensorflow中Dense函数的具体使用的文章就介绍到这了,更多相关tensorflow Dense函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 一份python入门应该看的学习资料

    一份python入门应该看的学习资料

    关于python入门你应该看这些资料,帮助你快速入门python,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • Django websocket原理及功能实现代码

    Django websocket原理及功能实现代码

    这篇文章主要介绍了Django websocket原理及功能实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11
  • Python3内置模块之json编解码方法小结【推荐】

    Python3内置模块之json编解码方法小结【推荐】

    这篇文章主要介绍了Python3内置模块之json编解码方法小结,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-05-05
  • Python实现访问者模式详情

    Python实现访问者模式详情

    这篇文章主要介绍了Python实现访问者模式详情,访问者模式,指作用于一个对象结构体上的元素的操作。访问者可以使用户在不改变该结构体中的类的基础上定义一个新的操作,下文更多相关资料,需要的朋友可以参考下
    2022-03-03
  • python3翻转字符串里的单词点的实现方法

    python3翻转字符串里的单词点的实现方法

    这篇文章主要介绍了python3翻转字符串里的单词点的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Python大批量搜索引擎图像爬虫工具详解

    Python大批量搜索引擎图像爬虫工具详解

    这篇文章主要介绍了Python大批量搜索引擎图像爬虫工具,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-11-11
  • Python实现清理重复文件功能的示例代码

    Python实现清理重复文件功能的示例代码

    在电脑上或多或少的存在一些重复文件,体积小的倒没什么,如果体积大的就很占内存了。本文用python制作了一个删除重复文件的小工具,核心代码很简单,希望对你有所帮助
    2022-07-07
  • Python小程序爬取今日新闻拿走就能用

    Python小程序爬取今日新闻拿走就能用

    这篇文章主要教大家怎样实现一个Python小程序,爬取今日新闻,文中给出了详细的示例代码,拿走就能用,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2021-09-09
  • 解决python中的print函数自动换行的问题

    解决python中的print函数自动换行的问题

    这篇文章主要介绍了解决python中的print函数自动换行的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • TensorFlow通过文件名/文件夹名获取标签,并加入队列的实现

    TensorFlow通过文件名/文件夹名获取标签,并加入队列的实现

    今天小编就为大家分享一篇TensorFlow通过文件名/文件夹名获取标签,并加入队列的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02

最新评论