C++ RBTree红黑树的性质与实现

 更新时间:2023年03月08日 11:01:29   作者:平凡的人1  
红黑树是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black;通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是平衡的

一、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是平衡的 。(既最长路径长度不超过最短路径长度的 2 倍)

ps:树的路径是从根节点走到空节点(此处为NIL 节点)才算一条路径

二、红黑树的性质

  • 每个结点不是红色就是黑色
  • 根结点是黑色的
  • 如果一个结点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)
  • 对于每个结点,从该节点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点
  • 每个叶子结点都是黑色的(此处的叶子结点指的是空节点,NIL节点),如果是空树,空节点也是黑色,符合第一个性质

理解最长路径长度不超过最短路径长度的 2 倍:

根据第三个性质:红黑树不会出现连续的红色结点,根据第四个性质:从每个结点到所有后代结点的路径上包含相同数目的黑色结点。

极端场景:最短路径上全黑,一条路径黑色节点的数量,最长路径上是一黑一红相间的路径

三、红黑树节点的定义

三叉链结构,对比AVL数节点的定义,把平衡因子替换成节点颜色,采用枚举的方式:

//结点颜色
enum Color
{
	RED,
	BLACK,
};
template<class K, class V >
struct RBTreeNode
{
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	Color _col;
	RBTreeNode(const pair<K,V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_col(RED)
	{}
};

这里可以清楚的看到,构造结点时默认设置为红色,问题来了:

如果插入的是黑色结点那就是不符合第四个性质(路径上均包含相同的黑色结点),此时我们必须要去进行维护每条路径的黑色结点

如果插入的是红色结点那就是不符合第三个性质(没有出现连续的红色结点),但是我们并不一定需要调整,如果根刚好为黑色,就不需要进行调整。

所以如果插入为红色结点,不一定会破坏结构,但是如果插入黑色结点我们就必须去进行维护了

四、红黑树的插入

红黑树插入的操作部分和AVL树的插入一样:

  • 找到待插入位置
  • 将待插入结点插入到树中
  • 调整:若插入结点的父结点是红色的,我们就需要对红黑树进行调整

前两步大差不差

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论

关键在于对红黑树进行调整:为了能够展示出各种情况,这里有一个基本的模型:

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一:cur为红,p为红,g为黑,u存在且为红 :

cur为红,p为红,g为黑,u存在且为红

关键看u结点,根结点的颜色为黑色,不能有连续的红色结点,所以上面的情况已经出现连续的红色结点了,此时我们需要进行调整:

把p结点改为黑色,同时把u结点也改为黑色(符合性质四:每条路径上的黑色节点数量相同),最后在把g结点改为红色;如果g是子树的话,g一定会有双亲,为了维持每条路径上黑色节点的数量,g必须变红,不然会多出一个黑色节点,在把g结点当做cur结点继续往上调整,当g为根结点时,在把g置为黑色:

代码实现:

      while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			if (parent == grandfater->_left)
			{
				Node* uncle = grandfater->_right;
				//情况一:u存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;
					cur = grandfater;
					parent = cur->_parent;
				}
				else//其他情况
				{
				}
			}
			else//parent==grandfater->_right
			{
				Node* uncle = grandfater->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
				}
			}
		}
		_root->_col = BLACK;

情况二:cur为红,p为红,g为黑,u不存在/u为黑,gpc在同一侧:

此时u的情况:

如果u结点不存在,则cur一定是新增结点,因为如果cur不是新增结点:则cur和p一定有一个节点时黑色,就不满足每条路径都有相同的黑色结点的性质。

如果u结点存在,则其一定是黑色的,那么c节点原来的颜色一定是黑色,在其子树调整过程中变为了红色

如果p为g的左孩子,cur为p的左孩子,则进行右单旋转;

如果p为g的右孩子,cur为p的右孩子,则进行左单旋转,

同时,p、g变色–p变黑,g变红

以下情况:u不存在,cur为新增节点,进行右单旋:

以下情况:u结点存在且为黑:

情况三: cur为红,p为红,g为黑,u不存在/u为黑,gpc不在同一侧:

这时候我们就需要进行双旋了:

p为g的左孩子,cur为p的右孩子,对p做左单旋转;

p为g的右孩子,cur为p的左孩子,对p做右单旋转; 旋转之后则转换成了情况2,在继续进行调整即可

五、代码实现

送上源码:

#pragma once
#include <iostream>
#include <assert.h>
#include <time.h>
using namespace std;
enum Color
{
	RED,
	BLACK,
};
template<class K, class V >
struct RBTreeNode
{
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;
	Color _col;
	RBTreeNode(const pair<K,V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_col(RED)
	{}
};
template<class K,class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		cur->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			if (parent == grandfater->_left)
			{
				Node* uncle = grandfater->_right;
				//情况一:u存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;
					//向上调整
					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					//情况2
					if (cur == parent->_left)
					{
						RotateR(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					//情况3
					else
					{
						//       g
						//  p
						//    c 
						RotateL(parent);
						RotateR(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}
					break;
				}
			}
			else//parent==grandfater->_right
			{
				Node* uncle = grandfater->_left;
				//情况1:u存在且为红色
				if (uncle && uncle->_col == RED)
				{
					uncle->_col = parent->_col = BLACK;
					grandfater->_col = RED;
					//向上调整
					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					//情况2:u不存在/u存在为黑色
					//g
					//    p
					//        c
					if (cur == parent->_right)
					{
						RotateL(grandfater);
						grandfater->_col = RED;
						parent->_col = BLACK;
					}
					//情况3
					//     g
					 //         p
					 //      c
					else
					{
						RotateR(parent);
						RotateL(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}
					break;
				}
			}
		}
		//根变黑
		_root->_col = BLACK;
		return true;
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (ppNode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subL;
		subL->_right = parent;
		if (ppNode == nullptr)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
	}
	void InOrder()
	{
		_InOrder(_root);
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}
	bool Check(Node*root,int blackNum,int ref)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (blackNum != ref)
			{
				cout << "违反规则:本条路径的黑色结点的数量根最左路径不相等" << endl;
				return false;
			}
			return true;
		}
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "违反规则:出现连续的红色结点" << endl;
			return false;
		}
		if (root->_col == BLACK)
		{
			++blackNum;
		}
		return Check(root->_left,blackNum,ref)
			&& Check(root->_right,blackNum,ref);
	}
	bool IsBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}
		if (_root->_col != BLACK)
		{
			return false;
		}
		int ref = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
			{
				++ref;
			}
			left = left->_left;
		}
		return Check(_root,0,ref);
	}
private:
	Node* _root = nullptr;
};
void TestRBTree1()
{
	//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	RBTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}
	t.InOrder();
	cout << t.IsBalance() << endl;
}
void TestRBTree2()
{
	srand(time(0));
	const size_t N = 100000;
	RBTree<int, int> t;
	for (size_t i = 0; i < N; i++)
	{
		size_t x = rand();
		t.Insert(make_pair(x, x));
	}
	cout << t.IsBalance() << endl;
}

到此这篇关于C++ RBTree红黑树的性质与实现的文章就介绍到这了,更多相关C++ RBTree红黑树内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 输入3个字符串,将它们按照字母由大到小排序(示例代码)

    输入3个字符串,将它们按照字母由大到小排序(示例代码)

    我们可以用string方法定义字符串变量。以下是具体实现代码。需要的朋友可以过来参考下,希望对大家有所帮助
    2013-10-10
  • C++单例设计模式详细讲解

    C++单例设计模式详细讲解

    单例模式(Singleton Pattern)是最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式,这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建
    2022-06-06
  • C++实现LeetCode(57.插入区间)

    C++实现LeetCode(57.插入区间)

    这篇文章主要介绍了C++实现LeetCode(57.插入区间),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-07-07
  • C语言位图算法详解

    C语言位图算法详解

    这篇文章主要介绍了C语言实现的位图算法,主要包括了位图算法的定义与应用,对于C程序算法设计的学习有一定的借鉴价值,需要的朋友可以参考下
    2014-09-09
  • stringstream操纵string的方法总结

    stringstream操纵string的方法总结

    下面小编就为大家带来一篇stringstream操纵string的方法总结。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-12-12
  • VS2010 boost标准库开发环境安装教程

    VS2010 boost标准库开发环境安装教程

    这篇文章主要为大家详细介绍了VS2010 boost标准库开发环境的安装教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-04-04
  • C语言实现快速排序

    C语言实现快速排序

    这篇文章主要为大家详细介绍了C语言实现快速排序算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-08-08
  • c++ TCHAR转string导致中文缺失或乱码问题及解决

    c++ TCHAR转string导致中文缺失或乱码问题及解决

    这篇文章主要介绍了c++ TCHAR转string导致中文缺失或乱码问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • C语言之通讯录的模拟实现代码

    C语言之通讯录的模拟实现代码

    这篇文章主要介绍了C语言之通讯录的模拟实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • 基于实现Qt秒表设计

    基于实现Qt秒表设计

    这篇文章主要为大家详细介绍了基于实现Qt秒表设计,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08

最新评论