C++前缀和与差分的使用示例讲解

 更新时间:2023年03月09日 08:48:41   作者:平凡的人1  
前缀和是指某序列的前n项和,可以把它理解为数学上的数列的前n项和,而差分可以看成前缀和的逆运算。合理的使用前缀和与差分,可以将某些复杂的问题简单化。类似于数学中的求导和积分,差分可以看成前缀和的逆运算

前缀和差分是一对逆运算

1.一维前缀和

有一个长度为n的数组an:a1,a2…an;

对于前缀和:Si= a1+a2+…+ai

如何求Si,S[i] = s[i-1]+a[i]

前缀和可以快速求出原数组里面一段数的和。比如求一段区间[l,r],如果按照原来的做法,需要循环一遍,O(n),有前缀和的算法:

这个区间的数就是(Sr) - (sl-1)。同时,为了方便计算令s[0] = 0.比如计算[1,l],既s[l]-s[0] = s[l].

其实前缀和就是一个区间相减的操作,统一处理。前缀和其实是非常简单的

练习题:

输入一个长度为 nn 的整数序列。

接下来再输入 mm 个询问,每个询问输入一对 l,rl,r。

对于每个询问,输出原序列中从第 ll 个数到第 rr 个数的和。

输入格式

第一行包含两个整数 nn 和 mm。

第二行包含 nn 个整数,表示整数数列。

接下来 mm 行,每行包含两个整数 ll 和 rr,表示一个询问的区间范围。

输出格式

共 mm 行,每行输出一个询问的结果。

数据范围

1≤l≤r≤n1≤l≤r≤n,

1≤n,m≤1000001≤n,m≤100000,

−1000≤数列中元素的值≤1000

#include <iostream>
using namespace std;
const int N = 100010;
int n,m;
int a[N],S[N];
int main()
{
    scanf("%d%d",&n,&m);
    for(int i = 1;i<=n;i++) scanf("%d",&a[i]);
    for(int i = 1;i<=n;i++) S[i] = S[i-1]+a[i];
    while(m--)
    {
        int l,r;
        scanf("%d%d",&l,&r);
        printf("%d\n",S[r]-S[l-1]);
    }
    return 0;
}

2.二维前缀和

二维前缀和是在一个二维矩阵里求子矩阵的和

练习题:

输入一个 nn 行 mm 列的整数矩阵,再输入 qq 个询问,每个询问包含四个整数 x1,y1,x2,y2x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。

对于每个询问输出子矩阵中所有数的和。

输入格式

第一行包含三个整数 n,m,qn,m,q。

接下来 nn 行,每行包含 mm 个整数,表示整数矩阵。

接下来 qq 行,每行包含四个整数 x1,y1,x2,y2x1,y1,x2,y2,表示一组询问。

输出格式

共 qq 行,每行输出一个询问的结果。

数据范围

1≤n,m≤10001≤n,m≤1000,

1≤q≤2000001≤q≤200000,

1≤x1≤x2≤n1≤x1≤x2≤n,

1≤y1≤y2≤m1≤y1≤y2≤m,

−1000≤矩阵内元素的值≤1000\

#include <iostream>
using namespace std;
const int N = 1010;
int n,m,q;
long a[N][N],s[N][N];
int main()
{
    scanf("%d%d%d",&n,&m,&q);
    for(int i = 1;i<=n;i++)
    {
        for(int j = 1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
            //求前缀和
            s[i][j] = s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];
        }
    }
    while(q--)
    {
        int x1,y1,x2,y2;
        scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        printf("%d\n",s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1]);
    }
    return 0;
}

3.一维差分

给定a[1],a[2],…,a[n]构造差分数组b[N],使得a[i] = b[1]+b[2]+…+b[i]

b1 = a1,b2 = a2-a1,b3 = a3-a2,直到bn = an-an-1

b是a的差分,a是b的前缀和。有b数组就可以通过O(n)的时间复杂度得到a数组。

推导过程:

现在在a数组[L,R]中全部加上C,那就是al+C,al+1+C,…,ar+C,通过暴力的方式O(n)可以求解,那差分可以变成O(1)

在[L,R]中,如果我们在b数组bl+C,那么al也会加上C,al+1也会加上C…an+1也会加上C,因为每一次都会加上一个bl。但是我们只要al到ar加上C,那么ar后面不要加上C,那么我们直接让br-c即可完成数组a在[L,R]范围里全部加上C。

核心操作是将a[L~R]全部加上C等价于b[L] +=C,b[R+1]-=C

把O(n)提高到O(1)

假定a数组全是初始化为0,那b数组也是全为0,但是题目a数组并不是0,我们可以看成进行n次插入操作,第一次是在原数组a[1,1]加上a1,第二次是在原数组a[2,2]加上a2…以此类推即可,所以并不需要去想如何构造差分

题目:

输入一个长度为 nn 的整数序列。

接下来输入 mm 个操作,每个操作包含三个整数 l,r,cl,r,c,表示将序列中 [l,r][l,r] 之间的每个数加上 cc。

请你输出进行完所有操作后的序列。

输入格式

第一行包含两个整数 nn 和 mm。

第二行包含 nn 个整数,表示整数序列。

接下来 mm 行,每行包含三个整数 l,r,cl,r,c,表示一个操作。

输出格式

共一行,包含 nn 个整数,表示最终序列。

数据范围

1≤n,m≤1000001≤n,m≤100000,

1≤l≤r≤n1≤l≤r≤n,

−1000≤c≤1000−1000≤c≤1000,

−1000≤整数序列中元素的值≤1000

#include <iostream>
using namespace std;
const int N = 100010;
int n,m;
int a[N],b[N];
void insert(int l,int r,int c)
{
    b[l]+=c;
    b[r+1]-=c;
}
int main()
{
    cin>>n>>m;
    for(int i = 1;i<=n;i++)
    {
        cin>>a[i];
        insert(i,i,a[i]);
    }
    while(m--)
    {
        int l,r,c;
        cin>>l>>r>>c;
        insert(l,r,c);
    }
    for(int i = 1;i<=n;i++) a[i] = a[i-1]+b[i];
    for(int i = 1;i<=n;i++) printf("%d ",a[i]);
    return 0;
}

4.二维差分

二维差分也是一样的道理

练习题:

输入一个 nn 行 mm 列的整数矩阵,再输入 qq 个操作,每个操作包含五个整数 x1,y1,x2,y2,cx1,y1,x2,y2,c,其中 (x1,y1)(x1,y1) 和 (x2,y2)(x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。

每个操作都要将选中的子矩阵中的每个元素的值加上 cc。

请你将进行完所有操作后的矩阵输出。

输入格式

第一行包含整数 n,m,qn,m,q。

接下来 nn 行,每行包含 mm 个整数,表示整数矩阵。

接下来 qq 行,每行包含 55 个整数 x1,y1,x2,y2,cx1,y1,x2,y2,c,表示一个操作。

输出格式

共 nn 行,每行 mm 个整数,表示所有操作进行完毕后的最终矩阵。

数据范围

1≤n,m≤10001≤n,m≤1000,

1≤q≤1000001≤q≤100000,

1≤x1≤x2≤n1≤x1≤x2≤n,

1≤y1≤y2≤m1≤y1≤y2≤m,

−1000≤c≤1000−1000≤c≤1000,

−1000≤矩阵内元素的值≤1000

#include <iostream>
using namespace std;
const int N = 1010;
int n,m,q;
int a[N][N],b[N][N];
void Insert(int x1,int y1,int x2,int y2,int c)
{
    b[x1][y1]+=c;
    b[x2+1][y1]-=c;
    b[x1][y2+1]-=c;
    b[x2+1][y2+1]+=c;
}
int main()
{
    scanf("%d%d%d",&n,&m,&q);
    for(int i = 1;i<=n;i++)
    {
        for(int j = 1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
        }
    }
    for(int i = 1;i<=n;i++)
    {
        for(int j = 1;j<=m;j++)
        {
            Insert(i,j,i,j,a[i][j]);
        }
    }
    while(q--)
    {
        int x1,y1,x2,y2,c;
        scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&c);
        Insert(x1,y1,x2,y2,c);
    }
    for(int i = 1;i<=n;i++)
    {
        for(int j = 1;j<=m;j++)
        {
            b[i][j] += b[i-1][j]+b[i][j-1]-b[i-1][j-1];
        }
    }
     for(int i = 1;i<=n;i++)
    {
        for(int j = 1;j<=m;j++)
        {
            printf("%d ",b[i][j]);
        }
        puts("");
    }
    return 0;
}

到此这篇关于C++前缀和与差分的使用示例讲解的文章就介绍到这了,更多相关C++前缀和与差分内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C++继承介绍

    C++继承介绍

    C++继承可以是单一继承或多重继承,每一个继承连接可以是public,protected,private也可以是virtual或non-virtual
    2013-01-01
  • OpenCV c++滑动条的创建和使用代码

    OpenCV c++滑动条的创建和使用代码

    滚动条(Trackbar)在OpenCV中是非常方便的交互工具,它依附于特定的窗口而存在,下面这篇文章主要给大家介绍了关于OpenCV c++滑动条的创建和使用的相关资料,需要的朋友可以参考下
    2023-06-06
  • C++中的对象初始化操作代码

    C++中的对象初始化操作代码

    对象初始化可以分为默认初始化、直接初始化、拷贝初始化以及值初始化。本文重点给大家介绍C++中的对象初始化操作代码,感兴趣的朋友跟随小编一起看看吧
    2021-12-12
  • C++类的定义与实现

    C++类的定义与实现

    这篇文章主要介绍了C++类的定义与实现,违章围绕C++类的定义的相关资料展开全文内容,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-01-01
  • C语言中回调函数的使用详情

    C语言中回调函数的使用详情

    这篇文章主要介绍了C语言中回调函数的使用详情,阅读下文我们将学习到架构的核心理念和需、回调函数的作用、回调函数的程序编写等内容,需要的小伙伴可以参考一下
    2022-03-03
  • c语言使用fdk_aac实现aac音频解码为pcm

    c语言使用fdk_aac实现aac音频解码为pcm

    这篇文章主要为大家详细介绍了c语言如何使用fdk_aac库实现aac音频解码为pcm的功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-11-11
  • C++资源管理操作方法详解

    C++资源管理操作方法详解

    系统中的资源,诸如动态申请的内存,文件描述符,数据库连接,网络socket等,在不用的时候,应该及时归还给系统,否则就会造成内存泄露
    2022-09-09
  • 全面了解#pragma once与 #ifndef的区别

    全面了解#pragma once与 #ifndef的区别

    下面小编就为大家带来一篇全面了解#pragma once与 #ifndef的区别。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-08-08
  • C语言中宏定义使用的小细节

    C语言中宏定义使用的小细节

    本篇文章是对C语言中宏定义使用的小细节进行了详细的分析介绍,需要的朋友参考下
    2013-05-05
  • C++11关于auto关键字的使用示例

    C++11关于auto关键字的使用示例

    今天小编就为大家分享一篇关于C++11关于auto关键字的使用示例,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2018-12-12

最新评论