详解分库分表后非分片键如何查询
正文
我们知道在分库分表中对于toC业务来说,需要选择用户属性如 user_id 作为分片键,不推荐使用order_id这样的作为分片键。
那问题来了,对于订单表来说,选择了user_id作为分片键以后如何查看订单详情呢?比如下面这样一条SQL:
SELECT * FROM T_ORDER WHERE order_id = 801462878019256325
由于查询条件中的order_id不是分片键,所以需要查询所有分片才能得到最终的结果。如果下面有 1000 个分片,那么就需要执行 1000 次这样的 SQL,这时性能就比较差了。
可以通过ShardingSphere-JDBC生成的SQL得知,根据order_id查询会对所有分片进行查询然后通过UNION ALL
进行合并。
但是,我们知道 order_id 是主键,应该只有一条返回记录,也就是说,order_id 只存在于一个分片中。这时,可以有以下三种设计:
- 冗余数据法
- 索引表法
- 基因分片法
当然,这三种设计的本质都是通过冗余实现空间换时间的效果,否则就需要扫描所有的分片,当分片数据非常多,效率就会变得极差。
下面我们逐一分析。
设计一:冗余法
这种做法很容易理解,同一份订单数据在插入时保存两份,根据user_id 和 order_id分别做两个分库分表的实现。
通过对表进行冗余,对于 order_id 的查询,只需要在 order_id = 801462878019256325
的分片中直接查询就行,效率最高。但是这个方案设计的缺点又很明显:冗余数据量太大。
方法二:索引表法
索引表法是对第一种冗余法的改进,由于第一种方案冗余的数据量太大,所以索引表方案中只创建一个包含user_id和order_id的索引表,在插入订单时再插入一条数据到索引表中。
表结构如下
CREATE TABLE idx_orderid_userid ( order_id bigint user_id bigint, PRIMARY KEY (order_id) )
在实现时可以将idx_orderid_userid表通过Redis缓存来代替,如果此表数据量很大也可以将其分库分表,但是它的分片键是 order_id。
如果这时再根据字段 order_id 进行查询,可以进行类似二级索引的回表实现:先通过查询索引表得到记录 order_id = 801462878019256325
对应的分片键 user_id 的值,接着再根据 user_id 进行查询,最终定位到想要的数据,如:
原始SQL:
SELECT * FROM T_ORDER WHERE order_id = 801462878019256325
拆分后的SQL:
# step 1 SELECT user_id FROM idx_orderid_userid WHERE order_id = 801462890610556951 # step 2 SELECT * FROM T_ORDER WHERE user_id = ? AND order_id = 801462890610556951
这个例子是将一条 SQL 语句拆分成 2 条 SQL 语句,但是拆分后的 2 条 SQL 都可以通过分片键进行查询,这样能保证只需要在单个分片中完成查询操作。不论有多少个分片,也只需要查询 2个分片的信息,这样 SQL 的查询性能可以得到极大的提升。
方法三:基因法
通过索引表的方式,虽然存储上较冗余全表容量小了很多,但是要根据另一个分片键进行数据的存储,还是显得不够优雅。
因此,最优的设计,不是创建一个索引表,而是将分片键的信息保存在想要查询的列中,这样通过查询的列就能直接知道所在的分片信息,这种方法也叫叫做基因法。
基因法的原理出自一个理论:对一个数取余2的n次方,那么余数就是这个数的二进制的最后n位数。
假如我们现在根据user_id进行分片,采用user_id % 16的方式来进行数据库路由,这里的user_id%16,其本质是user_id的最后4个bit位 log(16,2) = 4 决定这行数据落在哪个分片上,这4个bit就是分片基因。
如上图所示,user_id=20160169的用户创建了一个订单(20160169的二进制表示为:1001100111001111010101001)
- 使用user_id%16分片,决定这行数据要插入到哪个分片中
- 分库基因是user_id的最后4个bit,log(16,2) = 4,即1001
- 在生成order_id时,先使用一种分布式ID生成算法生成前60bit(上图中绿色部分)
- 将分库基因加入到order_id的最后4个bit(上图中粉色部分)
- 拼装成最终的64bit订单order_id(上图中蓝色部分)
这样保证了同一个用户创建的所有订单都落到了同一个分片上,order_id的最后4个bit都相同,于是:
- 通过user_id %16 能够定位到分片
- 通过order_id % 16也能定位到分片
不好理解的话,可以看下面这段代码:
@Test public void modIdTest(){ long userID = 20160169L; //分片数量 int shardNum = 16; String gen = getGen(userID, shardNum); log.info("userID:{}的基因为:{}",userID,gen); long snowId = IdWorker.getId(Order.class); log.info("雪花算法生成的订单ID为{}",snowId); Long orderId = buildGenId(snowId,gen); log.info("基因转换后的订单ID为{}",orderId); Assert.assertEquals(orderId % shardNum , userID % shardNum); }
运行结果如下:
原始订单ID为1595662702879973377
,通过基因转换后ID变成了1595662702879973385
,对于用户id 和 新生成的订单id对其取模结果一样。
上面那种做法是基因替换,替换掉订单id的分片基因。下面这种做法就更显直接。
将订单表 orders 的主键设计为一个字符串,这个字符串中最后一部分包含分片键的信息,如:
order_id = string(order_id + user_id)
那么这时如果根据 order_id 进行查询:
SELECT * FROM T_ORDER WHERE order_id = '1595662702879973377-20160169';
由于字段 order_id 的设计中直接包含了分片键信息,所以我们可以直接通过分片键部分直接定位到分片上。
同样地,在插入时,由于可以知道插入时 user_id 对应的值,所以只要在业务层做一次字符的拼接,然后再插入数据库就行了。
这样的实现方式较冗余表和索引表的设计来说,效率更高,查询时可以直接定位到数据对应的分片信息,只需 1 次查询就能获取想要的结果。
这样实现的缺点是,主键值会变大一些,存储也会相应变大。但是只要主键值是有序的,插入的性能就不会变差。而通过在主键值中保存分片信息,却可以大大提升后续的查询效率,这样空间换时间的设计,总体上看是非常值得的。
实际上淘宝的订单号也是这样构建的
上图是我的淘宝订单信息,可以看到,订单号的最后 6 位都是 607041,所以可以大概率推测出:
- 淘宝订单表的分片键是用户 ID;
- 淘宝订单表,订单表的主键包含用户 ID,也就是分片信息。这样通过订单号进行查询,可以获得分片信息,从而查询 1 个分片就能得到最终的结果。
小结
分库分表后需要遵循一个基本原则:所有的查询尽量带上sharding key,有时候业务需要根据技术限制进行妥协,那种既要...又要...就是在耍流氓。
当然有些业务场景确实没办法避免,对于非sharding key的查询可以参考上面三种方案实现,不过实际上只能算两种。
曾经在面试时我还被问到过这个问题~
今天的文章是属于理论知识,Talk is cheap,Show me the code!
接下来两篇文章我将结合ShardingSphere-JDBC实现上述两种方案,更多关于分库分表非分片键查询的资料请关注脚本之家其它相关文章!
相关文章
Navicat Premium自定义 sql 标签的创建方式
Navicat 中可以自定义一下sql语句的标签,方便开发者使用,这篇文章主要介绍了Navicat Premium自定义sql标签的创建方式,包括自定义标签创建方式,结合示例代码给大家介绍的非常详细,需要的朋友可以参考下2022-09-09Win2003系统安装SQL Server2000后1433端口未开放的解释
这篇文章主要介绍了Win2003系统安装SQL Server2000后1433端口未开放的解释2007-02-02
最新评论