Python之ThreadPoolExecutor线程池问题

 更新时间:2023年03月14日 10:16:22   作者:程序猿-张益达  
这篇文章主要介绍了Python之ThreadPoolExecutor线程池问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

概念

Python中已经有了threading模块,为什么还需要线程池呢,线程池又是什么东西呢?

以爬虫为例,需要控制同时爬取的线程数,例子中创建了20个线程,而同时只允许3个线程在运行,但是20个线程都需要创建和销毁,线程的创建是需要消耗系统资源的,有没有更好的方案呢?

其实只需要三个线程就行了,每个线程各分配一个任务,剩下的任务排队等待,当某个线程完成了任务的时候,排队任务就可以安排给这个线程继续执行。

这就是线程池的思想(当然没这么简单),但是自己编写线程池很难写的比较完美,还需要考虑复杂情况下的线程同步,很容易发生死锁。

Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutorProcessPoolExecutor两个类,实现了对threadingmultiprocessing的进一步抽象(这里主要关注线程池),不仅可以帮我们自动调度线程,还可以做到:

  • 主线程可以获取某一个线程(或者任务的)的状态,以及返回值。
  • 当一个线程完成的时候,主线程能够立即知道。
  • 让多线程和多进程的编码接口一致。

实例

简单使用

from concurrent.futures import ThreadPoolExecutor
import time
 
# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
# 通过submit函数提交执行的函数到线程池中,submit函数立即返回,不阻塞
task1 = executor.submit(get_html, (3))
task2 = executor.submit(get_html, (2))
# done方法用于判定某个任务是否完成
print(task1.done())
# cancel方法用于取消某个任务,该任务没有放入线程池中才能取消成功
print(task2.cancel())
time.sleep(4)
print(task1.done())
# result方法可以获取task的执行结果
print(task1.result())
 
# 执行结果
# False  # 表明task1未执行完成
# False  # 表明task2取消失败,因为已经放入了线程池中
# get page 2s finished
# get page 3s finished
# True  # 由于在get page 3s finished之后才打印,所以此时task1必然完成了
# 3     # 得到task1的任务返回值

ThreadPoolExecutor构造实例的时候,传入max_workers参数来设置线程池中最多能同时运行的线程数目。

使用submit函数来提交线程需要执行的任务(函数名和参数)到线程池中,并返回该任务的句柄(类似于文件、画图),注意submit()不是阻塞的,而是立即返回。

通过submit函数返回的任务句柄,能够使用done()方法判断该任务是否结束。上面的例子可以看出,由于任务有2s的延时,在task1提交后立刻判断,task1还未完成,而在延时4s之后判断,task1就完成了。

使用cancel()方法可以取消提交的任务,如果任务已经在线程池中运行了,就取消不了。这个例子中,线程池的大小设置为2,任务已经在运行了,所以取消失败。如果改变线程池的大小为1,那么先提交的是task1,task2还在排队等候,这是时候就可以成功取消。

使用result()方法可以获取任务的返回值。查看内部代码,发现这个方法是阻塞的。

as_completed

上面虽然提供了判断任务是否结束的方法,但是不能在主线程中一直判断啊。

有时候我们是得知某个任务结束了,就去获取结果,而不是一直判断每个任务有没有结束。

这是就可以使用as_completed方法一次取出所有任务的结果。

from concurrent.futures import ThreadPoolExecutor, as_completed
import time
 
# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
all_task = [executor.submit(get_html, (url)) for url in urls]
 
for future in as_completed(all_task):
    data = future.result()
    print("in main: get page {}s success".format(data))
 
# 执行结果
# get page 2s finished
# in main: get page 2s success
# get page 3s finished
# in main: get page 3s success
# get page 4s finished
# in main: get page 4s success

as_completed()方法是一个生成器,在没有任务完成的时候,会阻塞,在有某个任务完成的时候,会yield这个任务,就能执行for循环下面的语句,然后继续阻塞住,循环到所有的任务结束。

从结果也可以看出,先完成的任务会先通知主线程

map

除了上面的as_completed方法,还可以使用executor.map方法,但是有一点不同。

from concurrent.futures import ThreadPoolExecutor
import time
 
# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
 
for data in executor.map(get_html, urls):
    print("in main: get page {}s success".format(data))
# 执行结果
# get page 2s finished
# get page 3s finished
# in main: get page 3s success
# in main: get page 2s success
# get page 4s finished
# in main: get page 4s success

使用map方法,无需提前使用submit方法,map方法与python标准库中的map含义相同,都是将序列中的每个元素都执行同一个函数。

上面的代码就是对urls的每个元素都执行get_html函数,并分配各线程池。可以看到执行结果与上面的as_completed方法的结果不同,输出顺序和urls列表的顺序相同,就算2s的任务先执行完成,也会先打印出3s的任务先完成,再打印2s的任务完成。

wait

wait方法可以让主线程阻塞,直到满足设定的要求。

from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED, FIRST_COMPLETED
import time
 
# 参数times用来模拟网络请求的时间
def get_html(times):
    time.sleep(times)
    print("get page {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
urls = [3, 2, 4] # 并不是真的url
all_task = [executor.submit(get_html, (url)) for url in urls]
wait(all_task, return_when=ALL_COMPLETED)
print("main")
# 执行结果 
# get page 2s finished
# get page 3s finished
# get page 4s finished
# main

wait方法接收3个参数,等待的任务序列、超时时间以及等待条件。

等待条件return_when默认为ALL_COMPLETED,表明要等待所有的任务都结束。

可以看到运行结果中,确实是所有任务都完成了,主线程才打印出main

等待条件还可以设置为FIRST_COMPLETED,表示第一个任务完成就停止等待。

源码分析

cocurrent.future模块中的future的意思是未来对象,可以把它理解为一个在未来完成的操作,这是异步编程的基础 。

在线程池submit()之后,返回的就是这个future对象,返回的时候任务并没有完成,但会在将来完成。

也可以称之为task的返回容器,这个里面会存储task的结果和状态。

ThreadPoolExecutor内部是如何操作这个对象的呢?

下面简单介绍ThreadPoolExecutor的部分代码:

1.init方法

init方法中主要重要的就是任务队列和线程集合,在其他方法中需要使用到。

2.submit方法

submit中有两个重要的对象,_base.Future()_WorkItem()对象,_WorkItem()对象负责运行任务和对future对象进行设置,最后会将future对象返回,可以看到整个过程是立即返回的,没有阻塞。

3.adjust_thread_count方法

这个方法的含义很好理解,主要是创建指定的线程数。但是实现上有点难以理解,比如线程执行函数中的weakref.ref,涉及到了弱引用等概念,留待以后理解。

4._WorkItem对象

_WorkItem对象的职责就是执行任务和设置结果。这里面主要复杂的还是self.future.set_result(result)

5.线程执行函数--_worker

这是线程池创建线程时指定的函数入口,主要是从队列中依次取出task执行,但是函数的第一个参数还不是很明白。留待以后。

总结

future的设计理念很棒,在线程池/进程池和携程中都存在future对象,是异步编程的核心。

ThreadPoolExecutor 让线程的使用更加方便,减小了线程创建/销毁的资源损耗,无需考虑线程间的复杂同步,方便主线程与子线程的交互。

线程池的抽象程度很高,多线程和多进程的编码接口一致。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 使用Python 自动生成 Word 文档的教程

    使用Python 自动生成 Word 文档的教程

    今天小编就为大家分享一篇使用Python 自动生成 Word 文档的教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • 2款Python内存检测工具介绍和使用方法

    2款Python内存检测工具介绍和使用方法

    这篇文章主要介绍了2款Python内存检测工具介绍和使用方法,可以用来分析Python程序的内存使用量,需要的朋友可以参考下
    2014-06-06
  • python实现有效的括号判断实例代码

    python实现有效的括号判断实例代码

    这篇文章主要给大家介绍了关于python实现有效的括号判断的相关资料,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2022-01-01
  • Anaconda中安装Tensorflow的过程

    Anaconda中安装Tensorflow的过程

    这篇文章主要介绍了Anaconda中如何安装Tensorflow,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-03-03
  • Python及PyCharm下载与安装教程

    Python及PyCharm下载与安装教程

    这篇文章主要为大家详细介绍了Python及PyCharm下载与安装教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-11-11
  • Linux上使用Python统计每天的键盘输入次数

    Linux上使用Python统计每天的键盘输入次数

    这篇文章主要介绍了Linux上使用Python统计每天的键盘输入次数,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-04-04
  • python切片及sys.argv[]用法详解

    python切片及sys.argv[]用法详解

    Sys.argv[]是用来获取命令行参数的,sys.argv[0]表示代码本身文件路径,所以参数从1开始。下面通过实例代码给大家介绍python切片及sys.argv[]用法,需要的朋友参考下吧
    2018-05-05
  • 详解pandas删除缺失数据(pd.dropna()方法)

    详解pandas删除缺失数据(pd.dropna()方法)

    这篇文章主要介绍了pandas删除缺失数据(pd.dropna()方法),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • pytorch 如何把图像数据集进行划分成train,test和val

    pytorch 如何把图像数据集进行划分成train,test和val

    这篇文章主要介绍了pytorch 把图像数据集进行划分成train,test和val的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • 解决Pytorch在测试与训练过程中的验证结果不一致问题

    解决Pytorch在测试与训练过程中的验证结果不一致问题

    这篇文章主要介绍了解决Pytorch在测试与训练过程中的验证结果不一致问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06

最新评论