pyspark dataframe列的合并与拆分实例

 更新时间:2023年03月23日 08:36:10   作者:山木枝  
这篇文章主要介绍了pyspark dataframe列的合并与拆分实例,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

pyspark dataframe列的合并与拆分

使用Spark SQL在对数据进行处理的过程中,可能会遇到对一列数据拆分为多列,或者把多列数据合并为一列。

这里记录一下目前想到的对DataFrame列数据进行合并和拆分的几种方法。

from pyspark.sql import SparkSession
spark = SparkSession.builder \
    .master("local") \
    .appName("dataframe_split") \
    .config("spark.some.config.option", "some-value") \
    .getOrCreate()
 
sc = spark.sparkContext
df = spark.read.csv('hdfs://master:9000/dataset/dataframe_split.csv', inferSchema=True, header=True)
df.show(3)

原始数据如下所示

dataframe列数据的分割

from pyspark.sql.functions import split, explode, concat, concat_ws
df_split = df.withColumn("s", split(df['score'], " "))
df_split.show()

 

dataframe列数据的拆分

zipWithIndex:给每个元素生成一个索引 

排序首先基于分区索引,然后是每个分区内的项目顺序.因此,第一个分区中的第一个item索引为0,最后一个分区中的最后一个item的索引最大.当RDD包含多个分区时此方法需要触发spark作业.

first_row = df.first()
numAttrs = len(first_row['score'].split(" "))
print("新增列的个数", numAttrs)
attrs = sc.parallelize(["score_" + str(i) for i in range(numAttrs)]).zipWithIndex().collect()
print("列名:", attrs)
for name, index in attrs:
    df_split = df_split.withColumn(name, df_split['s'].getItem(index))
df_split.show()

 

dataframe将一行分成多行

df_explode = df.withColumn("e", explode(split(df['score'], " ")))
df_explode.show()

dataframe列数据的合并

列的合并有两个函数:一个不添加分隔符concat(),一个添加分隔符concat_ws()

concat

df_concat = df_split.withColumn("score_concat", concat(df_split['score_0'], \
                                                       df_split['score_1'], df_split['score_2'], df_split['score_3']))
df_concat.show()

 

caoncat_ws

df_ws = df_split.withColumn("score_concat", concat_ws('-', df_split['score_0'], \
                                                       df_split['score_1'], df_split['score_2'], df_split['score_3']))
df_ws.show()

dataframe多行转多列

pivot: 旋转当前[[dataframe]]列并执行指定的聚合 

#DataFrame 数据格式:每个用户对每部电影的评分 userID 用户ID,movieID 电影ID,rating评分
df=spark.sparkContext.parallelize([[15,399,2], \
                                   [15,1401,5], \
                                   [15,1608,4], \
                                   [15,20,4], \
                                   [18,100,3], \
                                   [18,1401,3], \
                                   [18,399,1]])\
                    .toDF(["userID","movieID","rating"])
#pivot 多行转多列
resultDF = df.groupBy("userID").pivot("movieID").sum("rating").na.fill(-1)
#结果
resultDF.show()

pyspark dataframe常用操作

总体原则

pyspark中,dataframe与sql的耗时会经引擎优化,效率高于rdd,因此尽可能使用dataframe或者sql。执行效率之外,dataframe优于rdd的另一个好处是:dataframe的各个量有语义信息,便于后期维护。比如rdd[0][1][1]这种很难维护,但是,df.info.school.grade就容易理解。

在使用dataframe过程中,应尽量避免使用udf,因为序列化数据原本在JVM中,现在spark在worker上启动一个Python进程,需要将全体数据序列化成python可解释的格式,计算昂贵。

列相关

根据已有列生成新列

from pyspark.sql.functions import length, col, lit, size
df.withColumn("length_col", length(col("existing_str_col"))) # 将existing_str_col的长度生成新列
df.withColumn("constant_col", lit("hello")) # 生成一列常量
df.withColumn("size_col", size(col("existing_array_col"))) # 将existing_array_col的元素个数生成新列

从已有列选择部分列

from pyspark.sql.functions import col
df = df.select(col("col_1").cast("string"), col("col_2").alias("col_2_")) # 选择col_1列和col_2列,并将col_1列转换为string格式,将col_2列重命名为col_2_,此时不再存在col_2

将几列连接起来形成新列

from pyspark.sql.functions import concat_ws
 
df = df.withColumn("concat_col", concat_ws("_", df.col_1, df.col_2)) # 使用_将col_1和col_2连接起来,构成新列concat_col

将string列分割成list

from pyspark.sql.functions import split
 
df = df.withColumn("split_col", split(df.col, "-")) #按照-将df中的col列分割,此时split_col时一个list,后续或者配合filter(length(...))使用

统计列均值

from pyspark.sql.functions import mean
 
col_mean = df.select(mean(col)).collect()[0][0]

行相关

从全体行中选择部分行(一般调试时使用)

print(df.take(5)) #交互式的pyspark shell中,等价于df.show(5)

统计行数量

print(df.count()) #统计行数量

从全体行中筛选出部分行

from pyspark.sql.functions import col
df = df.filter(col("col_1")==col("col_2")) #保留col_1等于col_2的行

删除带null的行

df.na.drop("all") # 只有当所有列都为空时,删除该行
df.na.drop("any") # 任意列为空时,删除该行
df.na.drop("all", colsubset=["col_1","col_2"]) # 当col_1和col_2都为空时,删除该行

去除重复行

df = df.distinct() # 删除所有列值相同的重复行
df = df.dropDuplicates(["date", "count"]) # 删除date, count两列值相同的行

一行拆分成多行

from pyspark.sql.functions import explode, split
 
df = df.withColumn("sub_str", explode(split(df["str_col"], "_"))) # 将str_col按-拆分成list,list中的每一个元素成为sub_str,与原行中的其他列一起组成新的行

填补行中的空值

df.na.fill({"col_name":fill_content}) # 用fill_content填补col_name列的空值

行前加入递增(不一定连续)唯一序号

from pyspark.sql.functions import monotonically_increasing_id
 
df = df.withColumn("id", monotonically_increasing_id())

两个dataframe

两个dataframe根据某列拼接

df_3 = df_1.join(df_2, df_1.col_1==df_2.col_2) # inner join, 只有当df_1中的col_1列值等于df_2中的col_2时,才会拼接
df_4 = df_1.join(df_2, df_1.col_1==df_2.col_2, "left") # left join, 当df_1中的col_1值不存在于df_2中时,仍会拼接,凭借值填充null

两个dataframe合并

df3 = df1.union(df2)

聚合操作

groupBy
from pyspark.sql.functions import concat_ws, split, explode, collect_list, struct
 
concat_df = concat_df.groupBy("sample_id", "sample_date").agg(collect_list('feature').alias("feature_list")) # 将同sample_id, sample_date的行聚合成组,feature字段拼成一个list,构成新列feature_list。agg配合groupBy使用,效果等于select。此时concat_df只有两列:sample_id和feature_list。
concat_tuple_df = concat_df.groupBy("sample_id", "sample_date").agg(collect_list(struct("feature", "owner")).alias("tuple")) # 将同sample_id, sample_date的行聚合成组, (feature, owner)两个字段拼成一个单位,组内所有单位拼成一个list,构成新列tuple

窗口函数

from pyspark.sql.window import Window
from pyspark.sql.functions import col, row_number
 
windowSpec = Window.partitionBy(df.id, df.date).orderBy(col("price").desc(), col("discount").asc()) # 相同id,date的行被聚成组,组内按照price降序,discount升序进行排列
df = df.withColumn("rank", row_number().over(windowSpec)) #为排序之后的组进行组内编号
df = df.filter(df.rank<=1) # 取组内top-1行

读写成csv

from pyspark.sql import SparkSession
from pyspark import SparkContext
 
sc = SparkContext(appName="test_rw")
sc_session = SparkSession(sc)
df.write.mode("overwrite").options(header="true").csv(output_path)
df = sc_session.csv.read(input_path, header=True)

dataframe转SQL

from pyspark import SparkContext
from pyspark.sql import SparkSession
 
sc = SparkContext(appName='get_sample')
sc_session = SparkSession(sc)
 
sample_df.createOrReplaceTempView("item_sample_df")
sample_df = sc_session.sql(
        '''
            select sample_id
                ,label
                ,type_ as type
                ,split(item_id, "_")[2] as owner
                ,ftime
            from item_sample_df
        ''')

自定义函数UDF(如非必要,勿用)

from pysprak.sql.functions import udf, col
from pyspark.sql.types import StringType, ArrayType, StructField, StructType
 
 
def simple_func(v1, v2):
    pass
    # return str
 
simple_udf = udf(my_func, StringType())
 
df = df.withColumn("new", simple_udf(df["col_1"], df["col_2"]))
 
 
 
# 复杂type
 
def get_entity_func():
    pass
    # return str_list_1, str_list_2
 
entity_schema = StructType([
                    StructField("location", ArrayType(StringType()), True),
                    StructField("nondigit", ArrayType(StringType()), True)
                ])
 
get_entity_udf = udf(get_entity_func, entity_schema)

dataframe与rdd互相转换

from pyspark import SparkContext
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, StringType, FloatType
 
 
sc = SparkContext(appName="rdd2df")
sc_session = SparkSession(sc)
 
rdd = df.rdd # df转rdd, 注意每列仍带header,要map(lambda line: [line.id, line.price])才可以转换成不带header
 
schema = StructType([
                    StructField("id", StringType(), True),
                    StructField("price", FloatType(), True)
                    ])
df = sc_session.createDataFrame(rdd, schema) # rdd转df

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 如何利用python发送邮件

    如何利用python发送邮件

    这篇文章主要介绍了如何利用python发送邮件,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-09-09
  • python 图像处理画一个正弦函数代码实例

    python 图像处理画一个正弦函数代码实例

    这篇文章主要介绍了python 图像处理画一个正弦函数代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • 使用selenium模拟动态登录百度页面的实现

    使用selenium模拟动态登录百度页面的实现

    本文主要介绍了使用selenium模拟动态登录百度页面,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-05-05
  • Pandas对数值进行分箱操作的4种方法总结

    Pandas对数值进行分箱操作的4种方法总结

    分箱是一种常见的数据预处理技术有时也被称为分桶或离散化,他可用于将连续数据的间隔分组到“箱”或“桶”中。本文将使用python Pandas库对数值进行分箱的4种方法,感兴趣的可以了解一下
    2022-05-05
  • pandas中pd.groupby()的用法详解

    pandas中pd.groupby()的用法详解

    本文主要介绍了pandas中pd.groupby()的用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧<BR>
    2022-06-06
  • keras训练曲线,混淆矩阵,CNN层输出可视化实例

    keras训练曲线,混淆矩阵,CNN层输出可视化实例

    这篇文章主要介绍了keras训练曲线,混淆矩阵,CNN层输出可视化实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • matlab绘制局部放大图图文教程

    matlab绘制局部放大图图文教程

    这篇文章主要给大家介绍了关于matlab绘制局部放大图的相关资料,所谓局部放大即呈现子图,以显示局部细节,需要的朋友可以参考下
    2023-07-07
  • 把JSON数据格式转换为Python的类对象方法详解(两种方法)

    把JSON数据格式转换为Python的类对象方法详解(两种方法)

    本文通过两种方法给大家介绍了把JSON数据格式转换为Python的类对象,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-06-06
  • python sklearn 画出决策树并保存为PDF的实现过程

    python sklearn 画出决策树并保存为PDF的实现过程

    这篇文章主要介绍了python sklearn 画出决策树并保存为PDF的实现过程,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • Python中的默认参数实例分析

    Python中的默认参数实例分析

    这篇文章主要介绍了Python中的默认参数实例分析,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01

最新评论