Pytorch之8层神经网络实现Cifar-10图像分类验证集准确率94.71%

 更新时间:2023年03月25日 10:05:34   作者:雪地(>^ω^<)  
这篇文章主要介绍了Pytorch之8层神经网络实现Cifar-10图像分类验证集准确率94.71%问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

实验环境 

  • Pytorch 1.7.0
  • torchvision 0.8.2
  • Python 3.8
  • CUDA10.2 + cuDNN v7.6.5
  • Win10 + Pycharm
  • GTX1660, 6G

网络结构采用最简洁的类VGG结构,即全部由3*3卷积和最大池化组成,后面接一个全连接层用于分类,网络大小仅18M左右。

神经网络结构图

8层神经网络结构图

Pytorch上搭建网络

class Block(nn.Module):
    def __init__(self, inchannel, outchannel, res=True):
        super(Block, self).__init__()
        self.res = res     # 是否带残差连接
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(outchannel),
        )
        if stride != 1 or inchannel != outchannel:
            self.shortcut = nn.Sequential(
                nn.Conv2d(inchannel, outchannel, kernel_size=1, bias=False),
                nn.BatchNorm2d(outchannel),
            )
        else:
            self.shortcut = nn.Sequential()

        self.relu = nn.Sequential(
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        out = self.left(x)
        if self.res:
            out += self.shortcut(x)
        out = self.relu(out)
        return out


class myModel(nn.Module):
    def __init__(self, cfg=[64, 'M', 128,  'M', 256, 'M', 512, 'M'], res=True):
        super(myModel, self).__init__()
        self.res = res       # 是否带残差连接
        self.cfg = cfg       # 配置列表
        self.inchannel = 3   # 初始输入通道数
        self.futures = self.make_layer()
        # 构建卷积层之后的全连接层以及分类器:
        self.classifier = nn.Sequential(nn.Dropout(0.4),            # 两层fc效果还差一些
                                        nn.Linear(4 * 512, 10), )   # fc,最终Cifar10输出是10类

    def make_layer(self):
        layers = []
        for v in self.cfg:
            if v == 'M':
                layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
            else:
                layers.append(Block(self.inchannel, v, self.res))
                self.inchannel = v    # 输入通道数改为上一层的输出通道数
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.futures(x)
        # view(out.size(0), -1): change tensor size from (N ,H , W) to (N, H*W)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

该网络可以很方便的改造成带残差的,只要在初始化网络时,将参数res设为True即可,并可改变cfg配置列表来方便的修改网络层数。

Pytorch上训练

所选数据集为Cifar-10,该数据集共有60000张带标签的彩色图像,这些图像尺寸32*32,分为10个类,每类6000张图。这里面有50000张用于训练,每个类5000张,另外10000用于测试,每个类1000张。
训练策略如下:

1.优化器

momentum=0.9 的 optim.SGD,adam在很多情况下能加速收敛,但因为是自适应学习率,在训练后期存在不能收敛到全局极值点的问题,所以采用能手动调节学习率的SGD,现在很多比赛和论文中也是采用该策略。设置weight_decay=5e-3,即设置较大的L2正则来降低过拟合。

# 定义损失函数和优化器
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=LR, momentum=0.9, weight_decay=5e-3)

2.学习率

optim.lr_scheduler.MultiStepLR,参数设为:milestones=[int(num_epochs * 0.56), int(num_epochs * 0.78)], gamma=0.1,即在0.56倍epochs和0.78时分别下降为前一阶段学习率的0.1倍。

# 学习率调整策略 MultiStep:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer=optimizer,
                   milestones=[int(num_epochs * 0.56), int(num_epochs * 0.78)],
                   gamma=0.1, last_epoch=-1)

在每个epoch训练完的时候一定要记得step一下,不然不会更新学习率,可以通过get_last_lr()来查看最新的学习率

# 更新学习率并查看当前学习率
scheduler.step()
print('\t last_lr:', scheduler.get_last_lr())

3.数据策略

实验表明,针对cifar10数据集,随机水平翻转、随机遮挡、随机中心裁剪能有效提高验证集准确率,而旋转、颜色抖动等则无效。

     norm_mean = [0.485, 0.456, 0.406]      # 均值
     norm_std = [0.229, 0.224, 0.225]       # 方差      
     transforms.Normalize(norm_mean, norm_std),                    #将[0,1]归一化到[-1,1]
     transforms.RandomHorizontalFlip(),                            # 随机水平镜像
     transforms.RandomErasing(scale=(0.04, 0.2), ratio=(0.5, 2)),  # 随机遮挡
     transforms.RandomCrop(32, padding=4)                          # 随机中心裁剪

4.超参数

batch_size = 512     # 约占用显存4G
num_epochs = 200     # 训练轮数
LR = 0.01            # 初始学习率    

实验结果:best_acc= 94.71%

在这里插入图片描述

另外,将网络改成14层的带残差结构后,准确率上升到了95.56%,但是网络大小也从18M到了43M。

以下是14层残差网络的全部代码,8层的只需修改cfg和初始化时的res参数:

cfg=[64, ‘M’, 128, 128, ‘M’, 256, 256, ‘M’, 512, 512,‘M’] 修改为 [64, ‘M’, 128, ‘M’, 256, ‘M’, 512, ‘M’]

# *_* coding : UTF-8 *_*
# 开发人员: csu·pan-_-||
# 开发时间: 2020/12/29 15:17
# 文件名称: battey_class.py
# 开发工具: PyCharm
# 功能描述: 自建CNN对cifar10进行分类

import torch
from torchvision import datasets, transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import onnx
import time
import numpy as np
import matplotlib.pyplot as plt


class Block(nn.Module):
    def __init__(self, inchannel, outchannel, res=True, stride=1):
        super(Block, self).__init__()
        self.res = res     # 是否带残差连接
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, kernel_size=3, padding=1, stride=stride, bias=False),
            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, kernel_size=3, padding=1, stride=1, bias=False),
            nn.BatchNorm2d(outchannel),
        )
        if stride != 1 or inchannel != outchannel:
            self.shortcut = nn.Sequential(
                nn.Conv2d(inchannel, outchannel, kernel_size=1, bias=False),
                nn.BatchNorm2d(outchannel),
            )
        else:
            self.shortcut = nn.Sequential()

        self.relu = nn.Sequential(
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        out = self.left(x)
        if self.res:
            out += self.shortcut(x)
        out = self.relu(out)
        return out


class myModel(nn.Module):
    def __init__(self, cfg=[64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512,'M'], res=True):
        super(myModel, self).__init__()
        self.res = res       # 是否带残差连接
        self.cfg = cfg       # 配置列表
        self.inchannel = 3   # 初始输入通道数
        self.futures = self.make_layer()
        # 构建卷积层之后的全连接层以及分类器:
        self.classifier = nn.Sequential(nn.Dropout(0.4),           # 两层fc效果还差一些
                                        nn.Linear(4 * 512, 10), )   # fc,最终Cifar10输出是10类

    def make_layer(self):
        layers = []
        for v in self.cfg:
            if v == 'M':
                layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
            else:
                layers.append(Block(self.inchannel, v, self.res))
                self.inchannel = v    # 输入通道数改为上一层的输出通道数
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.futures(x)
        # view(out.size(0), -1): change tensor size from (N ,H , W) to (N, H*W)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

all_start = time.time()
# 使用torchvision可以很方便地下载Cifar10数据集,而torchvision下载的数据集为[0,1]的PILImage格式
# 我们需要将张量Tensor归一化到[-1,1]
norm_mean = [0.485, 0.456, 0.406]  # 均值
norm_std = [0.229, 0.224, 0.225]  # 方差
transform_train = transforms.Compose([transforms.ToTensor(),  # 将PILImage转换为张量
                                      # 将[0,1]归一化到[-1,1]
                                      transforms.Normalize(norm_mean, norm_std),
                                      transforms.RandomHorizontalFlip(),  # 随机水平镜像
                                      transforms.RandomErasing(scale=(0.04, 0.2), ratio=(0.5, 2)),  # 随机遮挡
                                      transforms.RandomCrop(32, padding=4)  # 随机中心裁剪
                                      ])

transform_test = transforms.Compose([transforms.ToTensor(),
                                     transforms.Normalize(norm_mean, norm_std)])

# 超参数:
batch_size = 256
num_epochs = 200   # 训练轮数
LR = 0.01          # 初始学习率

# 选择数据集:
trainset = datasets.CIFAR10(root='Datasets', train=True, download=True, transform=transform_train)
testset = datasets.CIFAR10(root='Datasets', train=False, download=True, transform=transform_test)
# 加载数据:
train_data = DataLoader(dataset=trainset, batch_size=batch_size, shuffle=True)
valid_data = DataLoader(dataset=testset, batch_size=batch_size, shuffle=False)
cifar10_classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

train_data_size = len(trainset)
valid_data_size = len(testset)

print('train_size: {:4d}  valid_size:{:4d}'.format(train_data_size, valid_data_size))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = myModel(res=True)

# 定义损失函数和优化器
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=LR, momentum=0.9, weight_decay=5e-3)

# 学习率调整策略 MultiStep:
scheduler = optim.lr_scheduler.MultiStepLR(optimizer=optimizer,
                                           milestones=[int(num_epochs * 0.56), int(num_epochs * 0.78)],
                                           gamma=0.1, last_epoch=-1)

# 训练和验证:
def train_and_valid(model, loss_function, optimizer, epochs=10):
    model.to(device)
    history = []
    best_acc = 0.0
    best_epoch = 0

    for epoch in range(epochs):
        epoch_start = time.time()
        print("Epoch: {}/{}".format(epoch + 1, epochs))

        model.train()

        train_loss = 0.0
        train_acc = 0.0
        valid_loss = 0.0
        valid_acc = 0.0

        for i, (inputs, labels) in enumerate(train_data):
            inputs = inputs.to(device)
            labels = labels.to(device)

            # 因为这里梯度是累加的,所以每次记得清零
            optimizer.zero_grad()

            outputs = model(inputs)

            loss = loss_function(outputs, labels)

            loss.backward()

            optimizer.step()

            train_loss += loss.item() * inputs.size(0)

            ret, predictions = torch.max(outputs.data, 1)
            correct_counts = predictions.eq(labels.data.view_as(predictions))

            acc = torch.mean(correct_counts.type(torch.FloatTensor))

            train_acc += acc.item() * inputs.size(0)

        with torch.no_grad():
            model.eval()

            for j, (inputs, labels) in enumerate(valid_data):
                inputs = inputs.to(device)
                labels = labels.to(device)

                outputs = model(inputs)

                loss = loss_function(outputs, labels)

                valid_loss += loss.item() * inputs.size(0)

                ret, predictions = torch.max(outputs.data, 1)
                correct_counts = predictions.eq(labels.data.view_as(predictions))

                acc = torch.mean(correct_counts.type(torch.FloatTensor))

                valid_acc += acc.item() * inputs.size(0)
        # 更新学习率并查看当前学习率
        scheduler.step()
        print('\t last_lr:', scheduler.get_last_lr())

        avg_train_loss = train_loss / train_data_size
        avg_train_acc = train_acc / train_data_size

        avg_valid_loss = valid_loss / valid_data_size
        avg_valid_acc = valid_acc / valid_data_size

        history.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])

        if best_acc < avg_valid_acc:
            best_acc = avg_valid_acc
            best_epoch = epoch + 1

        epoch_end = time.time()

        print(
            "\t Training: Loss: {:.4f}, Accuracy: {:.4f}%, "
            "\n\t Validation: Loss: {:.4f}, Accuracy: {:.4f}%, Time: {:.3f}s".format(
                avg_train_loss, avg_train_acc * 100, avg_valid_loss, avg_valid_acc * 100,
                                epoch_end - epoch_start
            ))
        print("\t Best Accuracy for validation : {:.4f} at epoch {:03d}".format(best_acc, best_epoch))

        torch.save(model, '%s/' % 'cifar10_my' + '%02d' % (epoch + 1) + '.pt')  # 保存模型

        # # 存储模型为onnx格式:
        # d_cuda = torch.rand(1, 3, 32, 32, dtype=torch.float).to(device='cuda')
        # onnx_path = '%s/' % 'cifar10_shuffle' + '%02d' % (epoch + 1) + '.onnx'
        # torch.onnx.export(model.to('cuda'), d_cuda, onnx_path)
        # shape_path = '%s/' % 'cifar10_shuffle' + '%02d' % (epoch + 1) + '_shape.onnx'
        # onnx.save(onnx.shape_inference.infer_shapes(onnx.load(onnx_path)), shape_path)
        # print('\t export shape success...')

    return model, history


trained_model, history = train_and_valid(model, loss_func, optimizer, num_epochs)

history = np.array(history)
# Loss曲线
plt.figure(figsize=(10, 10))
plt.plot(history[:, 0:2])
plt.legend(['Tr Loss', 'Val Loss'])
plt.xlabel('Epoch Number')
plt.ylabel('Loss')
# 设置坐标轴刻度
plt.xticks(np.arange(0, num_epochs + 1, step=10))
plt.yticks(np.arange(0, 2.05, 0.1))
plt.grid()  # 画出网格
plt.savefig('cifar10_shuffle_' + '_loss_curve1.png')

# 精度曲线
plt.figure(figsize=(10, 10))
plt.plot(history[:, 2:4])
plt.legend(['Tr Accuracy', 'Val Accuracy'])
plt.xlabel('Epoch Number')
plt.ylabel('Accuracy')
# 设置坐标轴刻度
plt.xticks(np.arange(0, num_epochs + 1, step=10))
plt.yticks(np.arange(0, 1.05, 0.05))
plt.grid()  # 画出网格
plt.savefig('cifar10_shuffle_' + '_accuracy_curve1.png')

all_end = time.time()
all_time = round(all_end - all_start)
print('all time: ', all_time, ' 秒')
print("All Time: {:d} 分 {:d} 秒".format(all_time // 60, all_time % 60))

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python3.4学习笔记之类型判断,异常处理,终止程序操作小结

    Python3.4学习笔记之类型判断,异常处理,终止程序操作小结

    这篇文章主要介绍了Python3.4学习笔记之类型判断,异常处理,终止程序操作,结合具体实例形式分析了Python3.4模块导入、异常处理、退出程序等相关操作技巧与注意事项,需要的朋友可以参考下
    2019-03-03
  • python如何实现华氏温度和摄氏温度转换

    python如何实现华氏温度和摄氏温度转换

    这篇文章主要介绍了python如何实现华氏温度和摄氏温度转换,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • Python基于词频排序实现快速挖掘关键词

    Python基于词频排序实现快速挖掘关键词

    这篇文章主要为大家详细介绍了Python如何基于词频排序实现快速挖掘关键词功能,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-03-03
  • Python 实现购物商城,含有用户入口和商家入口的示例

    Python 实现购物商城,含有用户入口和商家入口的示例

    下面小编就为大家带来一篇Python 实现购物商城,含有用户入口和商家入口的示例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-09-09
  • python 将字符串转换成字典dict

    python 将字符串转换成字典dict

    将字符串转化成字典dict类型?这个可以用python的标准库simplejson 转换为JSON格式。
    2013-03-03
  • Python人工智能之sg2im文字转图像

    Python人工智能之sg2im文字转图像

    这篇文章主要介绍了Python人工智能中使用sg2im把文字转成图像的方法,sg2im是一个由Google开发的开源项目,它专注于将场景图形转换为图像,借助sg2im就可以把文字转换成图像,需要的朋友可以参考下
    2021-11-11
  • 使用python对excle和json互相转换的示例

    使用python对excle和json互相转换的示例

    今天小编就为大家分享一篇使用python对excle和json互相转换的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • python将音频进行变速的操作方法

    python将音频进行变速的操作方法

    这篇文章主要介绍了python将音频进行变速的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04
  • Python中的默认参数详解

    Python中的默认参数详解

    这篇文章主要介绍了Python中的默认参数详解,本文讲解了默认参数的基本原理、如何正确地使用可变参数等内容,需要的朋友可以参考下
    2015-06-06
  • pytorch 实现tensor与numpy数组转换

    pytorch 实现tensor与numpy数组转换

    今天小编就为大家分享一篇使用pytorch 实现tensor与numpy数组转换,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12

最新评论