详解FutureTask如何实现最大等待时间

 更新时间:2023年03月28日 14:27:17   作者:爱我-中华  
这篇文章主要为大家详细介绍了如何从源码中了解FutureTask实现最大等待时间的方法,文中的示例代码讲解详细,感兴趣的可以了解一下

预备知识

Java 线程挂起的常用方式有以下几种

Thread.sleep(long millis):这个方法可以让线程挂起一段时间,并释放 CPU 时间片,等待一段时间后自动恢复执行。这种方式可以用来实现简单的定时器功能,但如果不恰当使用会影响系统性能。

Object.wait() 和 Object.notify() 或 Object.notifyAll():这是一种通过等待某个条件的发生来挂起线程的方式。wait() 方法会让线程等待,直到其他线程调用了 notify() 或 notifyAll() 方法来通知它。这种方式需要使用 synchronized 或者 ReentrantLock 等同步机制来保证线程之间的协作和通信。

LockSupport.park() 和 LockSupport.unpark(Thread thread):这两个方法可以让线程挂起和恢复。park() 方法会使当前线程挂起,直到其他线程调用了 unpark(Thread thread) 方法来唤醒它。这种方式比较灵活,可以根据需要控制线程的挂起和恢复。

先上结论

1.futureTask.get时通过LockSupport.park()挂起线程

2.在Thread.run() 方法中 调用 setException(ex)或set(result),然后调用LockSupport.unpark(t)唤醒线程。

示例-引入主题

public class FutureTaskDemo {
    public static void main(String[] args) {
        FutureTask<String> futureTask = new FutureTask<>(new Callable() {
            @Override
            public Object call() throws Exception {
                System.out.println("异步线程执行");
                Thread.sleep(3000);//模拟线程执行任务需要3秒
                return "ok";
            }
        });
        Thread t1 = new Thread(futureTask, "线程一");
        t1.start();

        try {
            //关键代码
            String s = futureTask.get(2, TimeUnit.SECONDS); //最大等待线程2秒
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        } catch (TimeoutException e) {
            e.printStackTrace();
        }
    }
}

进入futureTask.get(2, TimeUnit.SECONDS)

  public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        if (s <= COMPLETING &&
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) //重点awaitDone,即完成了最大等待,依然没有结果就抛出异常逻辑
            throw new TimeoutException();
        return report(s);
    }

awaitDone返回线程任务执行状态,即小于等于COMPLETING(任务正在运行,等待完成)抛出异常TimeoutException

进入(awaitDone(true, unit.toNanos(timeout)))原理分析

private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                LockSupport.parkNanos(this, nanos);
            }
            else
                LockSupport.park(this);
        }
    }

总体解读awaitDone

利用自旋(for (;😉)的方式 ,检查state(任务状态)与waitNode(维护等待的线程),

第一步:首先检查if (Thread.interrupted()) 线程是否被打断(LockSupport.parkNanos挂起的线程被打断不抛出异常),

第二步:判断任务状态与waitNode是否入队+确定最大等待时间

​ 若已完成(if (s > COMPLETING))返回任务状态

​ 若已完成(if (s == COMPLETING))-->表示正在完成,但尚未完成。则让出 CPU,进入就绪状态,等待其他线程的执行

​ 若if (q == null)==>创建等待等待节点

​ 若if (!queued)==>表示上一步创建的节点没有和当前线程绑定,故绑定

​ 最后else if (timed)与else,判断最大等待时间

static final class WaitNode {
        volatile Thread thread;
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }
private static final int NEW          = 0;
private static final int COMPLETING   = 1;
private static final int NORMAL       = 2;
private static final int EXCEPTIONAL  = 3;
private static final int CANCELLED    = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED  = 6;
state可能转换的过程 
    1.NEW -> COMPLETING -> NORMAL (成功完成)
    2.NEW -> COMPLETING -> EXCEPTIONAL (异常)
    3.NEW -> CANCELLED (任务被取消)
    4.NEW -> INTERRUPTING -> INTERRUPTED(任务被打断)

关键代码

LockSupport.park(this, nanos) ==内部实现==> UNSAFE.park(false, nanos)();

​ 即让当前线程堵塞直至指定的时间(nanos),该方法同Thread.sleep()一样不会释放持有的对象锁,但不同的是Thread.sleep会被打断(interrupted)并抛出异常,而LockSupport.park被打断不会抛出异常,故在自旋时(for (;😉)需判断if (Thread.interrupted())线程是否被打断(手动抛出异常)。

线程运行时state的变化轨迹

新建时利用构造器设置state=NEW

 public FutureTask(Runnable runnable, V result) {
     this.callable = Executors.callable(runnable, result);
     this.state = NEW;   // 赋值状态
 }

线程运行时state可能变化轨迹

public void run() {
        ..........防止多次运行stat()方法..............
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex); //异常轨迹---> 见下分析
                }
                if (ran)
                    set(result); // 正常轨迹--->见下分析
            }
        } finally {
            runner = null;
    		//----最后结束---防止线程被打断
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

异常轨迹setException(ex)

protected void setException(Throwable t) {
    if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
        outcome = t;
        UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
        finishCompletion();
        //轨迹变化 2.NEW -> COMPLETING -> EXCEPTIONAL (异常)
    }
    //否则1: 3.NEW -> CANCELLED (任务被取消)
    //否则2: 4.NEW -> INTERRUPTING -> INTERRUPTED(任务被打断)
}

正常轨迹 set(result);

1.NEW -> COMPLETING -> NORMAL (成功完成)

到此这篇关于详解FutureTask如何实现最大等待时间的文章就介绍到这了,更多相关FutureTask最大等待时间内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • java-for循环问题

    java-for循环问题

    这篇文章主要介绍了java-for循环问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-03-03
  • java实现文件的断点续传

    java实现文件的断点续传

    这篇文章主要为大家详细介绍了java实现文件的断点续传,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-06-06
  • 基于Properties文件中的空格问题

    基于Properties文件中的空格问题

    这篇文章主要介绍了Properties文件中的空格问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-08-08
  • Java 数据结构线性表之顺序存储详解原理

    Java 数据结构线性表之顺序存储详解原理

    线性表的顺序存储是指用一组地址连续的存储单元依次存储线性表中的各个元素、使得线性表中在逻辑结构上相邻的数据元素存储在相邻的物理存储单元中,即通过数据元素物理存储的相邻关系来反映数据元素之间逻辑上的相邻关系
    2021-10-10
  • java分布式面试CAP分别代表含义分析

    java分布式面试CAP分别代表含义分析

    这篇文章主要为大家介绍了java分布式面试中关于CAP分别代表含义的问题分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2022-03-03
  • Java实现在PPT中创建SmartArt图形的示例代码

    Java实现在PPT中创建SmartArt图形的示例代码

    SmartArt其实就是一个文字的可视化工具,用户可在PowerPoint,Word,Excel中使用该特性创建各种图形图表。本文就将为您介绍如何通过Java应用程序在PPT中创建SmartArt图形,需要的可以参考一下
    2023-04-04
  • java核心编程之文件过滤类FileFilter和FilenameFilter

    java核心编程之文件过滤类FileFilter和FilenameFilter

    这篇文章主要为大家详细介绍了java文件过滤类FileFilter和FilenameFilter,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-08-08
  • 使用Rhino让java执行javascript的方法实例

    使用Rhino让java执行javascript的方法实例

    这篇文章主要介绍了java使用Rhino执行javascript的方法,Rhino由Mozilla开发,是 JavaScript 一种基于Java的实现
    2013-12-12
  • Java中的排序Comparator类用法详解

    Java中的排序Comparator类用法详解

    这篇文章主要介绍了Java中的排序Comparator类用法详解,Comparator 类常作为 sorted() 方法的参数传递给 sorted 方法,用来解决给集合排序,自定义排序规则的问题,需要的朋友可以参考下
    2023-08-08
  • mybatis中BigDecimal中的0存为null的坑及解决

    mybatis中BigDecimal中的0存为null的坑及解决

    在使用MyBatis进行数据库操作时,若Java中属性类型为BigDecimal且值为0,插入数据库时可能会变为null,而不是0,这个问题可能是由于MyBatis在处理BigDecimal类型时的弱类型判断导致的,当BigDecimal变量与空字符串进行比较时,MyBatis可能将其视为null
    2024-10-10

最新评论