Python学习之二叉树实现的示例详解

 更新时间:2023年04月10日 15:14:03   作者:逃逸的卡路里  
这篇文章主要为大家详细介绍了Python实现二叉树的相关知识,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解一下

Python实现二叉树

Python实现二叉树可以使用面向对象编程的方式,通过定义二叉树节点类来实现。每个节点包含一个数据元素、左右子节点指针和一些操作方法,如插入节点、查找节点、删除节点等。

以下是一个简单的二叉树实现示例:

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

    def insert(self, data):
        if self.data:
            if data < self.data:
                if self.left is None:
                    self.left = Node(data)
                else:
                    self.left.insert(data)
            elif data > self.data:
                if self.right is None:
                    self.right = Node(data)
                else:
                    self.right.insert(data)
        else:
            self.data = data

    def find(self, data):
        if data < self.data:
            if self.left is None:
                return str(data) + " Not Found"
            return self.left.find(data)
        elif data > self.data:
            if self.right is None:
                return str(data) + " Not Found"
            return self.right.find(data)
        else:
            return str(self.data) + " is found"

    def inorder_traversal(self, root):
        res = []
        if root:
            res = self.inorder_traversal(root.left)
            res.append(root.data)
            res = res + self.inorder_traversal(root.right)
        return res

在上述代码中,Node类定义了一个节点,包含数据元素data,以及左右子节点指针left和right。insert方法用于向二叉树中插入节点,find方法用于查找二叉树中是否存在特定节点,inorder_traversal方法用于对二叉树进行中序遍历。

下面是如何使用这个Node类来创建一个二叉树:

root = Node(50)
root.insert(30)
root.insert(20)
root.insert(40)
root.insert(70)
root.insert(60)
root.insert(80)

# 查找节点

print(root.find(70)) # Output: 70 is found
print(root.find(90)) # Output: 90 Not Found

# 中序遍历
print(root.inorder_traversal(root)) # Output: [20, 30, 40, 50, 60, 70, 80]

在上述代码中,首先创建了一个根节点root,然后使用insert方法向树中插入节点,最后使用find方法查找节点并使用inorder_traversal方法对二叉树进行中序遍历。

除了插入、查找和遍历方法,二叉树还有其他的操作方法,如删除节点、判断是否为二叉搜索树、计算树的深度等。下面是一个稍微完整一些的二叉树示例代码:

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

    def insert(self, data):
        if self.data:
            if data < self.data:
                if self.left is None:
                    self.left = Node(data)
                else:
                    self.left.insert(data)
            elif data > self.data:
                if self.right is None:
                    self.right = Node(data)
                else:
                    self.right.insert(data)
        else:
            self.data = data

    def find(self, data):
        if data < self.data:
            if self.left is None:
                return None
            return self.left.find(data)
        elif data > self.data:
            if self.right is None:
                return None
            return self.right.find(data)
        else:
            return self

    def delete(self, data):
        if self is None:
            return self

        if data < self.data:
            self.left = self.left.delete(data)
        elif data > self.data:
            self.right = self.right.delete(data)
        else:
            if self.left is None:
                temp = self.right
                self = None
                return temp
            elif self.right is None:
                temp = self.left
                self = None
                return temp
            temp = self.right.minimum()
            self.data = temp.data
            self.right = self.right.delete(temp.data)
        return self

    def minimum(self):
        if self.left is None:
            return self
        return self.left.minimum()

    def is_bst(self):
        if self.left:
            if self.left.data > self.data or not self.left.is_bst():
                return False

        if self.right:
            if self.right.data < self.data or not self.right.is_bst():
                return False

        return True

    def height(self, node):
        if node is None:
            return 0

        left_height = self.height(node.left)
        right_height = self.height(node.right)

        return max(left_height, right_height) + 1

    def inorder_traversal(self, root):
        res = []
        if root:
            res = self.inorder_traversal(root.left)
            res.append(root.data)
            res = res + self.inorder_traversal(root.right)
        return res

在这个示例中,我们新增了delete方法来删除指定的节点;minimum方法来查找树中的最小节点;is_bst方法来判断当前树是否为二叉搜索树;height方法来计算树的深度。

我们可以用以下代码来测试新增的方法:

# 创建二叉树
root = Node(50)
root.insert(30)
root.insert(20)
root.insert(40)
root.insert(70)
root.insert(60)
root.insert(80)

# 删除节点
print("Deleting node 20:")
root.delete(20)
print(root.inorder_traversal(root))

# 判断是否为二叉搜索树
print("Is it a BST?:", root.is_bst())

# 计算树的深度
print("Tree height:", root.height(root))

这样我们就完成了一个比较完整的二叉树的实现,同时也演示了如何在Python中使用面向对象编程思想来实现一个数据结构。

最后附上完整的二叉树类实现代码:

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

    def insert(self, data):
        if self.data:
            if data < self.data:
                if self.left is None:
                    self.left = Node(data)
                else:
                    self.left.insert(data)
            elif data > self.data:
                if self.right is None:
                    self.right = Node(data)
                else:
                    self.right.insert(data)
        else:
            self.data = data

    def find(self, data):
        if data < self.data:
            if self.left is None:
                return None
            return self.left.find(data)
        elif data > self.data:
            if self.right is None:
                return None
            return self.right.find(data)
        else:
            return self

    def delete(self, data):
        if self is None:
            return self

        if data < self.data:
            self.left = self.left.delete(data)
        elif data > self.data:
            self.right = self.right.delete(data)
        else:
            if self.left is None:
                temp = self.right
                self = None
                return temp
            elif self.right is None:
                temp = self.left
                self = None
                return temp
            temp = self.right.minimum()
            self.data = temp.data
            self.right = self.right.delete(temp.data)
        return self

    def minimum(self):
        if self.left is None:
            return self
        return self.left.minimum()

    def is_bst(self):
        if self.left:
            if self.left.data > self.data or not self.left.is_bst():
                return False

        if self.right:
            if self.right.data < self.data or not self.right.is_bst():
                return False

        return True

    def height(self, node):
        if node is None:
            return 0

        left_height = self.height(node.left)
        right_height = self.height(node.right)

        return max(left_height, right_height) + 1

    def inorder_traversal(self, root):
        res = []
        if root:
            res = self.inorder_traversal(root.left)
            res.append(root.data)
            res = res + self.inorder_traversal(root.right)
        return res

if __name__ == '__main__':
    # 创建二叉树
    root = Node(50)
    root.insert(30)
    root.insert(20)
    root.insert(40)
    root.insert(70)
    root.insert(60)
    root.insert(80)

    # 删除节点
    print("Deleting node 20:")
    root.delete(20)
    print(root.inorder_traversal(root))

    # 判断是否为二叉搜索树
    print("Is it a BST?:", root.is_bst())

    # 计算树的深度
    print("Tree height:", root.height(root))

运行代码后,可以得到以下输出:

Deleting node 20:
[30, 40, 50, 60, 70, 80]
Is it a BST?: True
Tree height: 3

这个示例包含了插入、查找、删除、遍历、判断是否为二叉搜索树和计算树的深度等。希望对看到的小伙伴有帮助。

到此这篇关于Python学习之二叉树实现的示例详解的文章就介绍到这了,更多相关Python二叉树内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 解读残差网络(Residual Network),残差连接(skip-connect)

    解读残差网络(Residual Network),残差连接(skip-connect)

    这篇文章主要介绍了残差网络(Residual Network),残差连接(skip-connect),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • python基础教程之常用运算符

    python基础教程之常用运算符

    这篇文章主要介绍了python基础教程之常用运算符,包含数学运算符、用于判断的运算符、逻辑运算符等,需要的朋友可以参考下
    2014-08-08
  • Python如何利用正则表达式爬取网页信息及图片

    Python如何利用正则表达式爬取网页信息及图片

    这篇文章主要给大家介绍了关于Python如何利用正则表达式爬取网页信息及图片的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Anaconda环境克隆、迁移的详细步骤

    Anaconda环境克隆、迁移的详细步骤

    最近需要在多台计算机上工作,每次重新部署环境比较麻烦,所以学习一下anaconda环境迁移的方法,下面这篇文章主要给大家介绍了关于Anaconda环境克隆、迁移的详细步骤,需要的朋友可以参考下
    2022-08-08
  • python制作微博图片爬取工具

    python制作微博图片爬取工具

    这篇文章主要介绍了python如何制作微博图片爬取工具,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2021-01-01
  • Python Flask前端自动登录功能实现详解

    Python Flask前端自动登录功能实现详解

    这篇文章主要介绍了Python Flask前端自动登录功能实现,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-10-10
  • python实现哈希表

    python实现哈希表

    介绍一个用python实现的哈希表,处理冲突的方法是开放地址法,冲突表达式为Hi=(H(key)+1)mod m,m为表长。迟点再实现更难的拉链法
    2014-02-02
  • Jupyter notebook中如何添加Pytorch运行环境

    Jupyter notebook中如何添加Pytorch运行环境

    这篇文章主要介绍了Jupyter notebook中如何添加Pytorch运行环境,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • Python 异步之在 Asyncio中如何运行阻塞任务详解

    Python 异步之在 Asyncio中如何运行阻塞任务详解

    这篇文章主要为大家介绍了Python 异步之在 Asyncio 中运行阻塞任务示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • Python函数any()和all()的用法及区别介绍

    Python函数any()和all()的用法及区别介绍

    any函数:any(x),只要x中有一个不为空,0,false就返回True,否则返回False。all(x)函数必须x中的所有元素均不为空,0,false才会返回True,否则返回False。接下来通过本文给大家介绍Python函数any()和all()的用法及区别介绍,需要的朋友参考下吧
    2018-09-09

最新评论