Python3中延时变量和 free_list链表的区别解析

 更新时间:2023年04月12日 14:44:20   作者:*_花非人陌_*  
这篇文章主要介绍了Python3中延时变量和 free_list链表的区别,在Python3中,"延时变量" 和 "free_list链表" 是两个不同的概念,他们之间没有直接联系,本文给实例相结合给大家讲解的非常详细,需要的朋友可以参考下

1、概念

1、区别

        在Python3中,"延时变量" 和 "free_list链表" 是两个不同的概念,他们之间没有直接联系。

2、延时变量(Lazy evaluation)

        延时变量是指在某些情况下,Python不会立即计算表达式的值,而是等到需要用到这个值的时候在进行计算。这种方式称为 "惰性计算" 或 "延时计算"。

      例如:生成器(generator)就是一种延时计算的方式。

当创建一个生成器对象时,它不会立即生成所有的值,而是在需要时逐个生成,这种方式的优点是:节省内存空间和计算资源

3. free_list链表

        free_list 链表 是Python3中的一个内存管理机制。采用了垃圾回收机制来自动管理内存空间,其中free_list链表是一种可以重复利用已经分配但未被使用的内存块的机制。

   当创建一个新对象时,Python会分配一块内存空间,并将其标记为已使用。当对象不在被引用时,Python会自动将其标记为未使用,并将其添加到free_list链表中。当下次创建对象时,Python会首先检查free_list链表中是否有可重复利用的内存块,从而避免不必要的内存分配和释放操作。

2、示例

1. 延时变量示例

        在这个示例中,定义了一个生成器函数 fibonacci(),实现了斐波那契数列的生成逻辑。当我们创建一个生成器对象 fib 时,它不会立即生成所有的斐波那契数列数值,而是在需要时逐个生成。在这里,我们使用了 next() 函数来获取下一个斐波那契数列数值。

# 定义一个生成器,实现斐波那契数列
def fibonacci():
    a, b = 0, 1
    while True:
        yield a
        a , b = b, a+b
#创建一个生成器对象
fib = fibonacci()
#打印前 10 个斐波那契数列数值
for i in range(10):
    print(next(fib))
'''
执行结果如下:
0
1
1
2
3
5
8
13
21
34
'''

2.free_list链表

        在这个示例中,我们先创建了两个相同的列表对象 ab,并打印它们的内存地址。然后,我们将 a 对象从内存中删除,并使用 gc.collect() 强制进行垃圾回收。接着,我们创建了一个新的列表对象 c,并打印它的内存地址。最后,我们使用 sys.getsizeof([]) 函数检查 free_list 链表中是否有可重复利用的内存块

import sys
import gc
#创建两个相同的列表对象
a = [1, 2, 3]
b = [1, 2, 3]
#打印a和b对象的内存地址
print("a 的内存地址:", id(a))
print("b 的内存地址:", id(b))
#将a 对象从内存中删除
del a
# 创建一个新的列表对象 c
# 强制进行垃圾回收
gc.collect()
c = [1, 2, 3]
#打印 c 对象的内存地址
print("c 的内存地址:", id(c))
 
#检查 free_list 链表中是否有可重复利用的内存块
print("free_list 链表:", sys.getsizeof([]))
'''
执行结果如下:
a 的内存地址: 22203400
b 的内存地址: 22201928
c 的内存地址: 21904648
free_list 链表: 64
'''

    gc.collect() 可以强制进行垃圾回收,但并不意味着内存会立即被清空。Python 中的内存管理是由解释器和操作系统共同管理的,具体的内存分配和回收时机也受到多种因素的影响,如垃圾回收器算法、系统内存使用情况等。

     在上面的示例中,当我们删除 a 对象并调用 gc.collect() 进行垃圾回收时,Python 解释器会将 a 对象所占用的内存标记为可回收状态,并将其添加到垃圾回收器的待回收列表中。但是,这并不意味着内存立即被回收,而是在垃圾回收器的下一轮回收时才会被清理。

      另外,即使 a 对象所占用的内存被回收了,也不一定意味着该内存空间被立即释放,因为 Python 中的内存管理采用了一种延迟分配的机制,即只有当需要申请更多内存时,Python 才会向操作系统请求分配新的内存空间。因此,在上面的示例中,虽然 a 对象的内存空间可能已经被回收,但该内存空间可能仍然被 Python 解释器保留以供未来使用,从而避免不必要的内存分配和释放开销。

        需要注意的是,即使 abc 三个对象的内存地址不重复,也并不意味着它们占用的内存空间不会重叠。这是因为,Python 中的内存管理方式是以对象为单位进行分配和管理的,每个对象占用的内存空间可能是不连续的,因此不同对象的内存空间可能会部分重叠。

到此这篇关于Python3中延时变量和 free_list链表的区别的文章就介绍到这了,更多相关Python延时变量和 free_list链表内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实现将一段话txt生成字幕srt文件

    Python实现将一段话txt生成字幕srt文件

    这篇文章主要为大家详细介绍了如何利用Python实现将一段话txt生成字幕srt文件,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-02-02
  • 中秋送礼分配不均这款python刮刮卡完美解决问题

    中秋送礼分配不均这款python刮刮卡完美解决问题

    这篇文章主要介绍了用Python实现一个抽奖刮刮卡来解决给小朋友的礼物不均,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2021-09-09
  • python set()去重的底层原理及实例

    python set()去重的底层原理及实例

    python中集合set是一个无序不重复元素的集,基本功能包括关系测试和消除重复元素,还可以计算交集、差集、并集等,它与列表(list)的行为类似,这篇文章主要介绍了python set()去重的底层原理,需要的朋友可以参考下
    2022-01-01
  • python爬取”顶点小说网“《纯阳剑尊》的示例代码

    python爬取”顶点小说网“《纯阳剑尊》的示例代码

    这篇文章主要介绍了python爬取”顶点小说网“《纯阳剑尊》的示例代码,帮助大家更好的利用python 爬虫爬取数据,感兴趣的朋友可以了解下
    2020-10-10
  • pytorch中torch.stack()函数用法解读

    pytorch中torch.stack()函数用法解读

    这篇文章主要介绍了pytorch中torch.stack()函数用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-04-04
  • 最新pycharm安装教程

    最新pycharm安装教程

    这篇文章主要介绍了最新pycharm安装教程,需要的朋友可以参考下
    2020-11-11
  • pandas将list数据拆分成行或列的实现

    pandas将list数据拆分成行或列的实现

    这篇文章主要介绍了pandas将list数据拆分成行或列的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • pytorch加载训练好的模型用来测试或者处理方式

    pytorch加载训练好的模型用来测试或者处理方式

    这篇文章主要介绍了pytorch加载训练好的模型用来测试或者处理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • python xlsxwriter创建excel图表的方法

    python xlsxwriter创建excel图表的方法

    这篇文章主要为大家详细介绍了python xlsxwriter创建excel图表的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • Python 基于xml.etree.ElementTree实现XML对比示例详解

    Python 基于xml.etree.ElementTree实现XML对比示例详解

    这篇文章主要介绍了Python 基于xml.etree.ElementTree实现XML对比,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-12-12

最新评论