分布式训练training-operator和pytorch-distributed RANK变量不统一解决

 更新时间:2023年04月13日 15:03:52   作者:烂笔头  
这篇文章主要介绍了分布式训练training-operator和pytorch-distributed RANK变量不统一问题的解决方案详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

正文

我们在使用 training-operator 框架来实现 pytorch 分布式任务时,发现一个变量不统一的问题:在使用 pytorch 的分布式 launch 时,需要指定一个变量是 node_rank 。同时,在 OpenMMLab 框架的 dist_train.sh 里,读取的系统环境变量是 NODE_RANK(如果系统里 NODE_RANK 没有被指定,则用默认值0)。

dist_train.sh

#!/usr/bin/env bash 
CONFIG=$1 
GPUS=$2 
NNODES=${NNODES:-1} 
NODE_RANK=${NODE_RANK:-0} # 如果NODE_RANK没有被设置为系统变量,则使用默认值0 
PORT=${PORT:-29500} 
MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"} 
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \ 
python -m torch.distributed.launch \ 
    --nnodes=$NNODES \ 
    --node_rank=$NODE_RANK \ # 作为torch.distributed.launch参数的一部分 
    --master_addr=$MASTER_ADDR \ 
    --nproc_per_node=$GPUS \ 
    --master_port=$PORT \ 
    $(dirname "$0")/train.py \ 
    $CONFIG \ 
    --seed 0 \ 
    --launcher pytorch ${@:3}

而在 training-operator 里,NODE_RANK 这个环境变量是以 RANK 的形式出现的。

这就会导致:通过 training-operator 启动的训练 pod 里只有 RANK 变量,没有 NODE_RANK 变量,那么, dist_train.sh 里的 $NODE_RANK 变量是一个默认值 0,每一个被启动的训练 pod 里的 NODE_RANK 也是 0。这会让每个pod都认为自己是第 0 个,每个 pod 都无法感知到别的 pod 的存在,那就会各自为政,在自己的 NODE 节点上重复性的做单机多卡的分布式训练。

那么,为了实现多机多卡的训练,就势必需要解决 training-operator 提供的环境变量 RANK 与 torch.distributed.launch 需要的环境变量 NODE_RANK 的不统一的问题。

解决的思路有两个方向

  • 保持 training-operator 的 RANK 变量不变,在训练的 pod 容器里,将 RANK 变量赋值给 NODE_RANK
  • 修改 training-operator,添加 NODE_RANK 变量,并将 NODE_RANK 变量的值设为 RANK 的值

这里选第二个,因为第一个方案没走通。。。

  • 然后,添加一个 name=NODE_RANKvalue= strconv.Itoa(rank) 的环境变量
func setPodEnv(obj interface{}, podTemplateSpec *corev1.PodTemplateSpec, rtype, index string) error {
   pytorchjob, ok := obj.(*kubeflowv1.PyTorchJob)
   if !ok {
      return fmt.Errorf("%+v is not a type of PyTorchJob", obj)
   }
   for i := range podTemplateSpec.Spec.Containers {
      // Initialize the environment variables.
      if len(podTemplateSpec.Spec.Containers[i].Env) == 0 {
         podTemplateSpec.Spec.Containers[i].Env = make([]corev1.EnvVar, 0)
      }
      // Set PYTHONUNBUFFERED to true, to disable output buffering.
      // Ref https://stackoverflow.com/questions/59812009/what-is-the-use-of-pythonunbuffered-in-docker-file.
      podTemplateSpec.Spec.Containers[i].Env = append(
         podTemplateSpec.Spec.Containers[i].Env, corev1.EnvVar{
            Name:  "PYTHONUNBUFFERED",
            Value: "0",
         })
      // If the master is not null, then we need to set the MASTER_ADDR and RANK.
      if pytorchjob.Spec.PyTorchReplicaSpecs[kubeflowv1.PyTorchJobReplicaTypeMaster] != nil {
         envVars, err := GetMasterEnvVarGenerator().Generate(pytorchjob)
         if err != nil {
            return err
         }
         // Set master related environment variables.
         podTemplateSpec.Spec.Containers[i].Env = append(
            podTemplateSpec.Spec.Containers[i].Env, envVars...)
         // Set world size and rank.
         rank, err := strconv.Atoi(index)
         if err != nil {
            return err
         }
         if rtype == strings.ToLower(string(kubeflowv1.PyTorchJobReplicaTypeWorker)) {
            rank = rank + 1
         }
         totalReplicas := getTotalReplicas(pytorchjob)
         podTemplateSpec.Spec.Containers[i].Env = append(podTemplateSpec.Spec.Containers[i].Env, corev1.EnvVar{
            Name:  "WORLD_SIZE",
            Value: strconv.Itoa(int(totalReplicas)),
         })
         podTemplateSpec.Spec.Containers[i].Env = append(podTemplateSpec.Spec.Containers[i].Env, corev1.EnvVar{
            Name:  "RANK",
            Value: strconv.Itoa(rank),
         })
         // 新增一个名为NODE_RANK的环境变量
         podTemplateSpec.Spec.Containers[i].Env = append(podTemplateSpec.Spec.Containers[i].Env, corev1.EnvVar{
            Name:  "NODE_RANK",
            Value: strconv.Itoa(rank),
         })
      }
      // Set the elastic environment variables if the elasticPolicy is not null.
      if pytorchjob.Spec.ElasticPolicy != nil {
         envVars, err := GetElasticEnvVarGenerator().Generate(pytorchjob)
         if err != nil {
            return err
         }
         // Set elastic related environment variables.
         podTemplateSpec.Spec.Containers[i].Env = append(
            podTemplateSpec.Spec.Containers[i].Env, envVars...)
      }
   }
   return nil
}
  • 重新编译:go build & docker build
 # Build manager binary.
go build -o bin/manager cmd/training-operator.v1/main.go
 # Build docker image with the manager.
docker build -t ${IMG} -f build/images/training-operator/Dockerfile .
 # Push docker image with the manager.
docker push ${IMG}
  • 替换掉默认的镜像,在./manifests/base/deployment.yaml里修改镜像地址为上一步骤docker push的地址

  • 重新部署, 在./manifests/overlays/standalone目录下
kubectl apply -k .

获得 NODE_RANK变量

如下:

以上就是分布式训练training-operator和pytorch-distributed RANK变量不统一解决的详细内容,更多关于pytorch RANK变量不统一的资料请关注脚本之家其它相关文章!

相关文章

  • 教你如何在Django 1.6中正确使用 Signal

    教你如何在Django 1.6中正确使用 Signal

    因为新的django开发人员得知signal之后, 往往会很高兴去使用它. 他们在能使用signal的地方就使用signal, 并且这是他们觉得自己是django专家一样. 然而, 像这样编码一段时间后, django项目就会变得异常复杂, 许多内容都纠结在一起无法解开.
    2014-06-06
  • 使用Python脚本备份华为交换机的配置信息

    使用Python脚本备份华为交换机的配置信息

    在现代网络管理中,备份交换机的配置信息是一项至关重要的任务,备份可以确保在交换机发生故障或配置错误时,能够迅速恢复到之前的工作状态,本文将详细介绍如何使用Python脚本备份华为交换机的配置信息,需要的朋友可以参考下
    2024-06-06
  • 浅谈Python爬虫基本套路

    浅谈Python爬虫基本套路

    这篇文章主要介绍了Python爬虫基本套路,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03
  • Python实现从多表格中随机抽取数据

    Python实现从多表格中随机抽取数据

    这篇文章主要介绍了如何基于Python语言实现随机从大量的Excel表格文件中选取一部分数据,并将全部文件中随机获取的数据合并为一个新的Excel表格文件的方法,希望对大家有所帮助
    2023-05-05
  • 浅谈python中的__init__、__new__和__call__方法

    浅谈python中的__init__、__new__和__call__方法

    这篇文章主要给大家介绍了关于python中__init__、__new__和__call__方法的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友可以参考学习,下面来跟着小编一起看看吧。
    2017-07-07
  • python模仿网页版微信发送消息功能

    python模仿网页版微信发送消息功能

    这篇文章主要介绍了python模仿网页版微信发送消息功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-02-02
  • 查看keras各种网络结构各层的名字方式

    查看keras各种网络结构各层的名字方式

    这篇文章主要介绍了查看keras各种网络结构各层的名字方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python  UPX is not available问题解决方法

    python  UPX is not available问题解决方法

    这篇文章主要介绍了python UPX is not available问题解决,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-04-04
  • Python图像处理之图像拼接

    Python图像处理之图像拼接

    这篇文章主要介绍了Python图像处理之图像拼接,文中有非常详细的代码示例,对正在学习python图像处理的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-04-04
  • Python编程之gui程序实现简单文件浏览器代码

    Python编程之gui程序实现简单文件浏览器代码

    这篇文章主要介绍了Python编程之gui程序实现简单文件浏览器代码,具有一定借鉴价值,需要的朋友可以了解下。
    2017-12-12

最新评论