Java中的布隆过滤器原理实现和应用

 更新时间:2023年04月23日 10:22:42   作者:.番茄炒蛋  
Java中的布隆过滤器是一种基于哈希函数的数据结构,能够高效地判断元素是否存在于一个集合中。它广泛应用于缓存、网络协议、数据查询等领域,在提高程序性能和减少资源消耗方面具有显著优势

介绍

本文全部代码地址

布隆过滤器是一种高效的数据结构,用于判断一个元素是否存在于一个集合中.它的主要优点是速度快,空间占用少,因此在需要快速判断某个元素是否在集合中的场合得到广泛引用.

布隆过滤器就是一个大型的位数组和几个不一样的无偏hash函数.所谓无偏就是能够把元素的hash值算的比较均匀.当布隆过滤器说某个值存在时,这个值可能不存在;当它说某个值不存在时,那就肯定不存在.

向布隆过滤器中添加key时,会使用多个hash函数对key进行hash算得一个整数索引值然后对应位数数组长度进行取模运算得到一个位置,每个hash函数都会算得一个不同的位置.再把位数组的这几个位置都置为1就完成了add操作.

向布隆过滤器询问key是否存在时,跟add一样,也会把hash的几个位置都算出来,看看数组中这几个位置是否都为1,只要有一个位为0,那么就说明布隆过滤器中这个key不存在.如果都是1,这并不能说明这个key就一定存在,只是极有可能存在,因为这些位置被置为1可能是因为其他的key存在所致.如果这个位数组长度比较大,存在概率就会很大,如果这个位数组长度比较小,存在的概率就会降低.

这种方法适用于数据命中不高、数据相对固定、实时性低(通常是数据集较大) 的应用场景,代码维护较为复杂,但是缓存空间占用很少.

实现

初始化数据

DROP TABLE IF EXISTS `user`;
CREATE TABLE `user`  (
    `id` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL,
    `name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
    `address` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL,
    PRIMARY KEY (`id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;
INSERT INTO `user` VALUES ('be079b29ddc111eda9b20242ac110003', '张三', '北京市海淀区xx街道123号');
INSERT INTO `user` VALUES ('be079b53ddc111eda9b20242ac110003', '李四', '上海市徐汇区xx路456号');
INSERT INTO `user` VALUES ('be079b95ddc111eda9b20242ac110003', '王五', '广州市天河区xx街道789号');
INSERT INTO `user` VALUES ('be079ba4ddc111eda9b20242ac110003', '赵六', '深圳市南山区xx路321号');
INSERT INTO `user` VALUES ('be079bb8ddc111eda9b20242ac110003', '周七', '成都市高新区xx街道654号');
INSERT INTO `user` VALUES ('be079bc5ddc111eda9b20242ac110003', '黄八', '武汉市江汉区xx街道234号');
INSERT INTO `user` VALUES ('be079bd4ddc111eda9b20242ac110003', '罗九', '南京市秦淮区xx路567号');
INSERT INTO `user` VALUES ('be079be2ddc111eda9b20242ac110003', '钱十', '重庆市渝北区xx街道890号');
INSERT INTO `user` VALUES ('be079befddc111eda9b20242ac110003', '周十一', '长沙市岳麓区xx路432号');
INSERT INTO `user` VALUES ('be079bfbddc111eda9b20242ac110003', '吴十二', '西安市雁塔区xx街道765号');

代码实现

这里只展示关于布隆过滤器的核心代码

public class BloomFilterHelper<T> {
    private int numHashFunctions;
    private int bitSize;
    private Funnel<T> funnel;
    public BloomFilterHelper(Funnel<T> funnel, int expectedInsertions, double fpp) {
        Preconditions.checkArgument(funnel != null, "funnel不能为空");
        this.funnel = funnel;
        // 计算bit数组长度
        bitSize = optimalNumOfBits(expectedInsertions, fpp);
        // 计算hash方法执行次数
        numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize);
    }
    public int[] murmurHashOffset(T value) {
        int[] offset = new int[numHashFunctions];
        long hash64 = Hashing.murmur3_128().hashObject(value, funnel).asLong();
        int hash1 = (int) hash64;
        int hash2 = (int) (hash64 >>> 32);
        for (int i = 1; i <= numHashFunctions; i++) {
            int nextHash = hash1 + i * hash2;
            if (nextHash < 0) {
                nextHash = ~nextHash;
            }
            offset[i - 1] = nextHash % bitSize;
        }
        return offset;
    }
    /**
     * 计算bit数组长度
     */
    private int optimalNumOfBits(long n, double p) {
        if (p == 0) {
            // 设定最小期望长度
            p = Double.MIN_VALUE;
        }
        return (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
    }
    /**
     * 计算hash方法执行次数
     */
    private int optimalNumOfHashFunctions(long n, long m) {
        return Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
    }
}
@Slf4j
@Configuration
public class BloomFilterConfig implements InitializingBean {
    @Autowired
    private StringRedisTemplate template;
    @Autowired
    private UserService userService;
    public static final String BLOOM_REDIS_PREFIX = "bloom_user";
    @Bean
    public BloomFilterHelper<String> initBloomFilterHelper() {
        return new BloomFilterHelper<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8)
                .putString(from, Charsets.UTF_8), 1000000, 0.01);
    }
    /**
     * 布隆过滤器bean注入
     *
     * @return
     */
    @Bean
    public BloomRedisService bloomRedisService() {
        BloomRedisService bloomRedisService = new BloomRedisService();
        bloomRedisService.setBloomFilterHelper(initBloomFilterHelper());
        bloomRedisService.setRedisTemplate(template);
        return bloomRedisService;
    }
    /**
     * 初始化方法,将数据库中的id加入到布隆过滤器
     * 也可以不必实现{@link InitializingBean}使用{@link javax.annotation.PostConstruct}注解
     *
     * @throws Exception
     */
    @Override
    public void afterPropertiesSet() throws Exception {
        List<String> idList = userService.getAllUserId();
        log.info("加载用户id到布隆过滤器当中,size:{}", idList.size());
        if (!CollectionUtils.isEmpty(idList)) {
            idList.forEach(item -> {
                bloomRedisService().addByBloomFilter(BLOOM_REDIS_PREFIX, item);
            });
        }
    }
}
public class BloomRedisService {
    private StringRedisTemplate redisTemplate;
    private BloomFilterHelper bloomFilterHelper;
    public void setBloomFilterHelper(BloomFilterHelper bloomFilterHelper) {
        this.bloomFilterHelper = bloomFilterHelper;
    }
    public void setRedisTemplate(StringRedisTemplate redisTemplate) {
        this.redisTemplate = redisTemplate;
    }
    /**
     * 根据给定的布隆过滤器添加值
     */
    public <T> void addByBloomFilter(String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            redisTemplate.opsForValue().setBit(key, i, true);
        }
    }
    /**
     * 根据给定的布隆过滤器判断值是否存在
     */
    public <T> boolean includeByBloomFilter(String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "bloomFilterHelper不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            if (!redisTemplate.opsForValue().getBit(key, i)) {
                return false;
            }
        }
        return true;
    }
}
@Configuration
public class InterceptorConfiguration implements WebMvcConfigurer {
    @Override
    public void addInterceptors(InterceptorRegistry registry) {
        //注册拦截器
        registry.addInterceptor(authInterceptorHandler())
                .addPathPatterns("/user/get/{id}");
    }
    @Bean
    public BloomFilterInterceptor authInterceptorHandler(){
        return new BloomFilterInterceptor();
    }
}
@Slf4j
public class BloomFilterInterceptor implements HandlerInterceptor {
    @Autowired
    private BloomRedisService bloomRedisService;
    @Override
    public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception {
        String currentUrl = request.getRequestURI();
        PathMatcher matcher = new AntPathMatcher();
        //解析出pathvariable
        Map<String, String> pathVariable = matcher.extractUriTemplateVariables("/user/get/{id}", currentUrl);
        //布隆过滤器存储在redis中
        String id = pathVariable.get("id");
        if (bloomRedisService.includeByBloomFilter(BloomFilterConfig.BLOOM_REDIS_PREFIX, id)) {
            log.info("{}极有可能存在,继续向下执行;", id);
            return true;
        }
        /*
         * 不在本地布隆过滤器当中,直接返回验证失败
         * 设置响应头
         */
        log.info("{}不存在,直接返回失败;", id);
        response.setHeader(HttpHeaders.CONTENT_TYPE, MediaType.APPLICATION_JSON_VALUE);
        response.setCharacterEncoding(StandardCharsets.UTF_8.toString());
        response.setStatus(HttpStatus.NOT_FOUND.value());
        Result res = new Result(HttpStatus.NOT_FOUND.value(), "用户不存在!", null);
        String result = new ObjectMapper().writeValueAsString(res);
        response.getWriter().print(result);
        return false;
    }
}

测试

存在的数据

不存在的数据

到此这篇关于Java中的布隆过滤器原理实现和应用的文章就介绍到这了,更多相关Java布隆过滤器内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • java System类和Arrays类详解

    java System类和Arrays类详解

    这篇文章主要介绍了java System类和Arrays类详解,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08
  • SpringBoot整合WebSocket实现实时通信功能

    SpringBoot整合WebSocket实现实时通信功能

    在当今互联网时代,实时通信已经成为了许多应用程序的基本需求,而WebSocket作为一种全双工通信协议,为开发者提供了一种简单、高效的实时通信解决方案,本文将介绍如何使用SpringBoot框架来实现WebSocket的集成,快速搭建实时通信功能,感兴趣的朋友可以参考下
    2023-11-11
  • 解决JDBC连接Mysql长时间无动作连接失效的问题

    解决JDBC连接Mysql长时间无动作连接失效的问题

    这篇文章主要介绍了解决JDBC连接Mysql长时间无动作连接失效的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 记一次springboot服务凌晨无故宕机问题的解决

    记一次springboot服务凌晨无故宕机问题的解决

    这篇文章主要介绍了记一次springboot服务凌晨无故宕机问题的解决,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-09-09
  • Java实现二叉堆、大顶堆和小顶堆

    Java实现二叉堆、大顶堆和小顶堆

    二叉堆就是完全二叉树,或者是靠近完全二叉树结构的二叉树。大顶堆要求对于一个节点来说,它的左右节点都比它小;小顶堆要求对于一个节点来说,它的左右节点都比它大。本文将用Java分别实现二叉堆、大顶堆和小顶堆。需要的可以参考一下
    2022-01-01
  • springboot 整合邮件发送功能

    springboot 整合邮件发送功能

    这篇文章主要介绍了springboot 整合邮件发送功能,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-12-12
  • java8新特性之Optional的深入解析

    java8新特性之Optional的深入解析

    这篇文章主要给大家介绍了关于java8新特性之Optional的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-02-02
  • java使用JSCH实现SFTP文件管理

    java使用JSCH实现SFTP文件管理

    这篇文章主要为大家详细介绍了java使用JSCH实现SFTP文件管理,实现上传、下载等功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-08-08
  • Spring boot 总结之跨域处理cors的方法

    Spring boot 总结之跨域处理cors的方法

    本篇文章主要介绍了Spring boot 总结之跨域处理cors的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • IDEA安装详细步骤(多图预警)

    IDEA安装详细步骤(多图预警)

    这篇文章主要介绍了IDEA安装详细步骤(多图预警),本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-04-04

最新评论