Python使用日志模块快速调试代码并记录异常信息

 更新时间:2023年04月25日 11:36:43   作者:csdn1561168266  
本文详细介绍了Python logging日志模块的使用方法,包括如何在代码中使用logging记录调试信息、如何设置日志级别、如何记录异常信息等。通过本文的指南,读者可以快速学会如何使用logging模块进行调试,并保留有用的日志信息,便于后续排查问题和优化代码

大家好,为了进行调试和错误跟踪,人们在整个代码库中广泛使用日志,今天来看看如何在代码中定义日志,并探讨日志的权限。

一、日志层级

在开始之前,需要注意的是,在日志记录中存在一个层次结构,称为日志树或日志者层次结构。该层次结构由几个级别组成,每个级别代表了日志信息的不同严重程度。最常见的层次是:

CRITICAL #A critical error occurred, the program may not be able to continue running.
ERROR    #An error occurred that should be investigated.
WARNING  #An indication that something unexpected happened or indicative of some problem in the near future.
INFO     #General information about the program's execution.
DEBUG    #Detailed information for debugging purposes.

二、创建模块

让我们创建一个名为set_logging.py的python模块:

import logging
logger = logging.getLogger()
def set_logger():
  logger.setLevel(logging.INFO)
  handler = logging.StreamHandler()
  handler.setLevel(logger_level)
  formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  handler.setFormatter(formatter)
  logger.addHandler(handler)

为了明确代码,我们用getLogger函数创建一个日志器实例,并使用setLevel来设置日志级别(DEBUGINFO等)。日志器的setLevel方法就像一个过滤器,它决定了一条日志信息是否应该被处理并发送给处理程序。例如,如果我们将日志记录器的级别设置为INFO,那么日志记录器就不会向处理程序发送级别为DEBUG的消息,因为它们的严重程度低于在日志记录器上设置的最低级别。它只将级别为INFO或更高的日志消息(即WARNINGERRORCRITICAL)发送给处理程序进行处理。

我们创建一个StreamHandler,将日志信息发送到一个流中,如控制台或终端。它被用来输出日志信息以达到调试的目的。我们还为处理程序设置了级别。

我们这样做是因为当处理程序收到来自日志记录器的消息时,它将把这些消息与它的级别进行比较,并在发出之前过滤掉严重程度较低的消息。当我们有不同的处理程序时:

logger.setLevel(logging.INFO)
file_handler = logging.FileHandler()
file_handler.setLevel(logging.ERROR)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.WARNING)

由于日志记录器的级别被设置为INFO,它只向两个处理程序发送级别为INFO或更高的日志消息,但每个处理程序只处理达到或超过其指定日志级别的消息。

回到我们的主要例子,然后我们创建一个格式化器并将其添加到处理程序中。格式化器指定了日志消息的格式,包括时间戳、日志记录器名称、日志级别和消息。最后,我们将处理程序添加到日志记录器中"。

现在在代码中,需要调用set_logger,如下所示:

import logging
from set_logging import set_logger
set_logger()
logger = logging.getLogger()
def roman_number(s: str) -> int:
    dic = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000}
    res = 0
    pre = None
    for char in s:
        res += dic.get(char)
        if dic.get(pre) and dic.get(pre) < dic.get(char):
            res -= 2 * dic.get(pre)
        pre = char
    logger.info("logging is awesome")
    return res
roman_number("IV")

运行这段代码,结果如下:

2023-03-04 02:26:57,619 - root - INFO - logging is awesome

三、使用日志的优点

  • 级别。一个日志记录器提供了一种方法来为不同类型的消息设置不同的日志级别,如DEBUGINFOWARNINGERRORCRITICAL。这使得根据日志消息的严重程度来过滤和确定其优先级变得更加容易。当然,打印可以模仿与日志相同的行为,但它需要更多的硬编码工作,而且不像日志那样灵活。
  • 性能。打印日志信息可能比使用记录器慢,特别是在处理大量数据或频繁进行记录的时候。
  • 可配置性。记录器提供了一种方法来配置应用程序的日志行为,如日志级别、日志目的地和日志格式,而无需修改源代码。这使得随着时间的推移,更容易管理和维护日志行为。
  • 灵活性。记录器允许你将日志信息发送到多个目的地,如控制台、文件或数据库。这种灵活性使得管理日志和分析它们变得更加容易。

到此这篇关于Python使用日志模块快速调试代码并记录异常信息的文章就介绍到这了,更多相关Python日志模块调试内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实现模块热加载的示例代码

    Python实现模块热加载的示例代码

    这篇文章主要为大家详细介绍了Python实现模块热加载的相关知识,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下
    2023-12-12
  • 浅谈使用Python变量时要避免的3个错误

    浅谈使用Python变量时要避免的3个错误

    这篇文章主要介绍了浅谈使用Python变量时要避免的3个错误,还是比较不错的,涉及部分代码分析,以及字典的创建等相关内容,需要的朋友可以参考下。
    2017-10-10
  • Python中常用的GUI(图形用户界面)库用法详细介绍

    Python中常用的GUI(图形用户界面)库用法详细介绍

    GUI图形用户界面是一种允许用户通过图形元素(如图标、按钮、窗口等)与电子设备进行交互的用户界面,下面这篇文章主要给大家介绍了关于Python中常用的GUI(图形用户界面)库用法的相关资料,需要的朋友可以参考下
    2024-08-08
  • pandas数据分列实现分割符号&固定宽度

    pandas数据分列实现分割符号&固定宽度

    数据分列在数据处理中很常见,数据分列一般指的都是字符串分割,本文主要介绍了pandas数据分列实现分割符号&固定宽度,具有一定的参考价值,感兴趣的可以了解一下
    2024-04-04
  • 解决cuda和pytorch不兼容的问题

    解决cuda和pytorch不兼容的问题

    这篇文章主要介绍了解决cuda和pytorch不兼容的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-03-03
  • python字符串中两个大括号{{}}的使用及说明

    python字符串中两个大括号{{}}的使用及说明

    这篇文章主要介绍了python字符串中两个大括号{{}}的使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • 一篇文章入门Python生态系统(Python新手入门指导)

    一篇文章入门Python生态系统(Python新手入门指导)

    原文写于2011年末,虽然文中关于Python 3的一些说法可以说已经不成立了,但是作为一篇面向从其他语言转型到Python的程序员来说,本文对Python的生态系统还是做了较为全面的介绍
    2015-12-12
  • python统计mysql数据量变化并调用接口告警的示例代码

    python统计mysql数据量变化并调用接口告警的示例代码

    这篇文章主要介绍了python统计mysql数据量变化并调用接口告警的示例代码,帮助大家更好的利用python操作数据库,感兴趣的朋友可以了解下
    2020-09-09
  • 在django中自定义字段Field详解

    在django中自定义字段Field详解

    今天小编就为大家分享一篇在django中自定义字段Field详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 使用Python-OpenCV消除图像中孤立的小区域操作

    使用Python-OpenCV消除图像中孤立的小区域操作

    这篇文章主要介绍了使用Python-OpenCV消除图像中孤立的小区域操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07

最新评论