OpenCV目标检测Meanshif和Camshift算法解析

 更新时间:2023年04月26日 11:05:03   作者:uncle_ll  
这篇文章主要为大家介绍了OpenCV目标检测Meanshif和Camshift算法解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

学习目标

在本章中,将学习用于跟踪视频中对象的Meanshift和Camshift算法

Meanshift

Meanshift背后的原理很简单,假设有点的集合(它可以是像素分布,例如直方图反投影)。 给定一个小窗口(可能是一个圆形),必须将该窗口移动到最大像素密度(或最大点数)的区域。如下图所示:

初始窗口以蓝色圆圈显示,名称为“C1”。其原始中心以蓝色矩形标记,名称为“C1_o”。但是,如果找到该窗口内点的质心,则会得到点“C1_r”(标记为蓝色小圆圈),它是窗口的真实质心。当然,二者是不匹配的。因此,移动窗口使新窗口的圆与上一个质心匹配。再次找到新的质心。很可能不会匹配。因此,再次移动它,并继续迭代,以使窗口的中心及其质心落在同一位置(或在很小的期望误差内)。因此,最终获得的是一个具有最大像素分布的窗口。它带有一个绿色圆圈,名为“C2”。正如您在图像中看到的,它具有最大的点数。整个过程在下面的静态图像上演示:

因此,通常会传递直方图反投影图像和初始目标位置当对象移动时,显然该移动会反映在直方图反投影图像中。因此,Meanshift算法就是将窗口移动到最大密度的新位置的算法。

OpenCV中的Meanshift

要在OpenCV中使用Meanshift,首先需要设置目标,找到其直方图,以便可以将目标反投影到每帧上以计算均值偏移。我们还需要提供窗口的初始位置。对于直方图,此处仅考虑色相(Hue)。另外,为避免由于光线不足而产生错误的值,可以使用cv2.inRange()函数丢弃光线不足的值。 使用的视频中的三帧如下:

import cv2
import numpy as np
video_file = 'slow_traffic_small.mp4'
cap = cv2.VideoCapture(video_file)
# take first frame of the video
ret, frame = cap.read()
# setup initial location of window
x, y, w, h = 300, 200, 100, 50  # simply hardcoded the values
track_window = (x, y, w, h)
# setup the roi for tracking
roi = frame[y:y+h, x:x+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
# setup the termination criteria, either 10 iteration or move by atleast 1 pt
term_crit = (cv2.TERM_CRITERIA_EPS|cv2.TERM_CRITERIA_COUNT, 10, 1)
while True:
    ret, frame = cap.read()
    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
        # apply meansift to get the new location
        ret, track_window = cv2.meanShift(dst, track_window, term_crit)
        # draw it on image
        x, y, w, h = track_window
        img2 = cv2.rectangle(frame, (x, y), (x+w, y+h), 255, 2)
        cv2.imshow('img2', img2)
        cv2.waitKey(0)
    else:
        cv2.destroyAllWindows()
        break

Camshift

度为止。

OpenCV中的Camshift

它与Meanshift相似,但是返回一个旋转的矩形和box参数(用于在下一次迭代中作为搜索窗口传递)。

import cv2
import numpy as np
video_file = 'slow_traffic_small.mp4'
cap = cv2.VideoCapture(video_file)
# take first frame of the video
ret, frame = cap.read()
# setup initial location of window
x, y, w, h = 300, 200, 100, 50  # simply hardcoded the values
track_window = (x, y, w, h)
# setup the roi for tracking
roi = frame[y:y+h, x:x+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
# setup the termination criteria, either 10 iteration or move by atleast 1 pt
term_crit = (cv2.TERM_CRITERIA_EPS|cv2.TERM_CRITERIA_COUNT, 10, 1)
while True:
    ret, frame = cap.read()
    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)
        # apply meansift to get the new location
        ret, track_window = cv2.CamShift(dst, track_window, term_crit)
        # draw it on image
        pts = cv2.boxPoints(ret)  # find four points of the box
        pts = np.int0(pts)
        img2 = cv2.polylines(frame, [pts], True, 255, 2)
        cv2.imshow('img2', img2)
        cv2.waitKey(0)
    else:
        cv2.destroyAllWindows()
        break

三帧的结果如下:

附加资源

  • French Wikipedia page on Camshift
  • Bradski, G.R., "Real time face and object tracking as a component of a perceptual user interface," Applications of Computer Vision, 1998. WACV '98. Proceedings., Fourth IEEE Workshop on , vol., no., pp.214,219, 19-21 Oct 1998

以上就是OpenCV目标检测Meanshif和Camshift算法解析的详细内容,更多关于OpenCV Meanshif Camshift算法的资料请关注脚本之家其它相关文章!

相关文章

  • python翻译软件实现代码(使用google api完成)

    python翻译软件实现代码(使用google api完成)

    这篇文章主要介绍了python结合google api完成的翻译软件实现代码,大家参考使用
    2013-11-11
  • python中编写config文件并及时更新的方法

    python中编写config文件并及时更新的方法

    在pytorch或者其他深度学习框架中,有许多超参数需要调整,包括learning_rate,training_data_path等,因此编写一个config文件统一存放这些参数,方便调用/查看/修改还是很有必要,这篇文章主要介绍了python中一种编写config文件并及时更新的方法,需要的朋友可以参考下
    2023-02-02
  • Python使用MD5加密字符串示例

    Python使用MD5加密字符串示例

    这篇文章主要介绍了Python使用MD5加密字符串示例,对一些可能出现的错误点上本文也给出提醒,需要的朋友可以参考下
    2014-08-08
  • Python基于ImageAI实现图像识别详解

    Python基于ImageAI实现图像识别详解

    ImageAI是一个面向计算机视觉编程的Python库,支持最先进的机器学习算法。本文将利用ImageAI实现图像识别功能,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-02-02
  • 关于python pygame游戏进行声音添加的技巧

    关于python pygame游戏进行声音添加的技巧

    这篇文章主要给大家分享的是pygame游戏进行声音添加的方法,这文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
    2021-10-10
  • python同步两个文件夹下的内容

    python同步两个文件夹下的内容

    这篇文章主要为大家详细介绍了python同步两个文件夹下的内容,包括子文件夹,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-08-08
  • 为了顺利买到演唱会的票用Python制作了自动抢票的脚本

    为了顺利买到演唱会的票用Python制作了自动抢票的脚本

    大麦网,是中国综合类现场娱乐票务营销平台,业务覆盖演唱会、 话剧、音乐剧、体育赛事等领域。但是因为票数有限,还有黄牛们不能丢了饭碗,所以导致了,很多人都抢不到票,那么,今天带大家用Python来制作一个自动抢票的脚本小程序
    2021-10-10
  • Pytorch通过保存为ONNX模型转TensorRT5的实现

    Pytorch通过保存为ONNX模型转TensorRT5的实现

    这篇文章主要介绍了Pytorch通过保存为ONNX模型转TensorRT5的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python ForMaiR实现自定义规则的邮件自动转发工具

    python ForMaiR实现自定义规则的邮件自动转发工具

    这篇文章主要为大家介绍了python ForMaiR实现自定义规则的邮件自动转发工具示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Python搭建Spark分布式集群环境

    Python搭建Spark分布式集群环境

    这篇文章主要介绍了Spark分布式集群环境搭建基于Python版,Apache Spark 是一个新兴的大数据处理通用引擎,提供了分布式的内存抽象。100 倍本文而是使用三台电脑来搭建一个小型分布式集群环境安装,需要的朋友可以参考下
    2019-07-07

最新评论